GroupTheory
HallSystem
compute a Hall system for a finite soluble group
Calling Sequence
Parameters
Description
Examples
HallSystem( G )
G
-
a finite soluble group
Let G be a finite soluble group. A Hall system for G is a collection C of Hall π-subgroups of G, one for each subset π of the prime divisors of the order of G. Note that this includes both G itself, as well as the trivial subgroup of G.
A Hall system for G exists provided that G is a soluble group, and conversely.
The HallSystem( G ) command constructs a Hall system for the soluble group G. If the group G is not soluble, then an exception is raised.
with⁡GroupTheory:
C≔HallSystem⁡Symm⁡3
C≔1,2,1,2,3,1,2,3,1,3,
map⁡GroupOrder,C
1,2,3,6
C≔HallSystem⁡Alt⁡4
C≔1,2,3,2,3,4,1,2,4,1,23,4,1,32,4,
1,3,4,12
C≔HallSystem⁡WreathProduct⁡Symm⁡3,CyclicGroup⁡2
C≔1,2,1,2,3,1,42,53,6,4,5,6,1,2,3,2,34,5,2,3,4,5,1,62,53,4,
1,8,9,72
G≔FrobeniusGroup⁡42,1
G≔2,73,64,5,2,3,54,7,6,1,2,3,4,5,6,7
ifactor⁡GroupOrder⁡G
2⁢3⁢7
C≔HallSystem⁡G
C≔2,73,64,5,2,3,54,7,6,1,2,3,4,5,6,7,1,4,7,3,6,2,5,1,4,23,5,6,1,4,7,3,6,2,5,1,62,53,4,1,3,42,7,6,1,23,74,6,1,4,7,3,6,2,5,1,3,42,7,6,1,23,74,6,
1,2,3,6,7,14,21,42
G≔DirectProduct⁡DihedralGroup⁡15,Symm⁡3
G≔1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,142,133,124,115,106,97,8,16,17,16,17,18
22⁢32⁢5
C≔1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,142,133,124,115,106,97,8,16,17,16,17,18,1,6,112,7,123,8,134,9,145,10,15,1,7,13,4,102,8,14,5,113,9,15,6,12,16,17,18,1,10,4,13,72,11,5,14,83,12,6,15,9,17,18,1,72,63,58,159,1410,1311,12,1,11,62,12,73,13,84,14,95,15,10,16,17,16,17,18,1,34,155,146,137,128,119,10,1,7,13,4,102,8,14,5,113,9,15,6,12,1,6,112,7,123,8,134,9,145,10,15,16,17,18,1,132,123,114,105,96,814,15,17,18,
1,4,5,9,20,36,45,180
Since GL⁡2,4 is an insoluble group, attempting to compute a Hall system for this group causes an exception to be raised.
HallSystem⁡GL⁡2,4
Error, (in GroupTheory:-HallSystem) group must be soluble
IsSoluble⁡GL⁡2,4
false
See Also
GroupTheory[AlternatingGroup]
GroupTheory[CyclicGroup]
GroupTheory[DihedralGroup]
GroupTheory[DirectProduct]
GroupTheory[FrobeniusGroup]
GroupTheory[GeneralLinearGroup]
GroupTheory[GroupOrder]
GroupTheory[IsSoluble]
GroupTheory[SymmetricGroup]
GroupTheory[WreathProduct]
ifactor
map
with
Download Help Document