GroupTheory/HallSystem - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : GroupTheory/HallSystem

GroupTheory

  

HallSystem

  

compute a Hall system for a finite soluble group

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

HallSystem( G )

Parameters

G

-

a finite soluble group

Description

• 

Let G be a finite soluble group.  A Hall system for G is a collection C of Hall π-subgroups of G, one for each subset π of the prime divisors of the order of G. Note that this includes both G itself, as well as the trivial subgroup of G.

• 

A Hall system for G exists provided that G is a soluble group, and conversely.

• 

The HallSystem( G ) command constructs a Hall system for the soluble group G. If the group G is not soluble, then an exception is raised.

Examples

withGroupTheory:

CHallSystemSymm3

C1,2,1,2,3,1,2,3,1,3,

(1)

mapGroupOrder,C

1,2,3,6

(2)

CHallSystemAlt4

C1,2,3,2,3,4,1,2,4,1,23,4,1,32,4,

(3)

mapGroupOrder,C

1,3,4,12

(4)

CHallSystemWreathProductSymm3,CyclicGroup2

C1,2,1,2,3,1,42,53,6,4,5,6,1,2,3,2,34,5,2,3,4,5,1,62,53,4,

(5)

mapGroupOrder,C

1,8,9,72

(6)

GFrobeniusGroup42,1

G2,73,64,5,2,3,54,7,6,1,2,3,4,5,6,7

(7)

ifactorGroupOrderG

237

(8)

CHallSystemG

C2,73,64,5,2,3,54,7,6,1,2,3,4,5,6,7,1,4,7,3,6,2,5,1,4,23,5,6,1,4,7,3,6,2,5,1,62,53,4,1,3,42,7,6,1,23,74,6,1,4,7,3,6,2,5,1,3,42,7,6,1,23,74,6,

(9)

mapGroupOrder,C

1,2,3,6,7,14,21,42

(10)

GDirectProductDihedralGroup15,Symm3

G1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,142,133,124,115,106,97,8,16,17,16,17,18

(11)

ifactorGroupOrderG

22325

(12)

CHallSystemG

C1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,142,133,124,115,106,97,8,16,17,16,17,18,1,6,112,7,123,8,134,9,145,10,15,1,7,13,4,102,8,14,5,113,9,15,6,12,16,17,18,1,10,4,13,72,11,5,14,83,12,6,15,9,17,18,1,72,63,58,159,1410,1311,12,1,11,62,12,73,13,84,14,95,15,10,16,17,16,17,18,1,34,155,146,137,128,119,10,1,7,13,4,102,8,14,5,113,9,15,6,12,1,6,112,7,123,8,134,9,145,10,15,16,17,18,1,132,123,114,105,96,814,15,17,18,

(13)

mapGroupOrder,C

1,4,5,9,20,36,45,180

(14)

Since GL2,4 is an insoluble group, attempting to compute a Hall system for this group causes an exception to be raised.

HallSystemGL2,4

Error, (in GroupTheory:-HallSystem) group must be soluble

IsSolubleGL2,4

false

(15)

See Also

GroupTheory

GroupTheory[AlternatingGroup]

GroupTheory[CyclicGroup]

GroupTheory[DihedralGroup]

GroupTheory[DirectProduct]

GroupTheory[FrobeniusGroup]

GroupTheory[GeneralLinearGroup]

GroupTheory[GroupOrder]

GroupTheory[IsSoluble]

GroupTheory[SymmetricGroup]

GroupTheory[WreathProduct]

ifactor

map

with