GroupTheory
Intersection
compute the intersection of two subgroups of a group
Calling Sequence
Parameters
Description
Examples
Compatibility
Intersection( A, B, ... )
A intersect B
A
-
a permutation group
B
The Intersection( A, B, ... ) command computes the intersection of one or more permutation groups A, B, ...
You can also compute the intersection of two permutation groups A and B by using the intersect operator: A intersect B.
with⁡GroupTheory:
A≔Group⁡Perm⁡1,13,7,24,2,17,4,19,3,5,9,23,8,15,10,22,6,14,11,21,12,18,16,20
A≔1,13,7,24,2,17,4,193,5,9,23,8,15,10,226,14,11,21,12,18,16,20
B≔Group⁡Perm⁡1,14,7,21,2,18,4,20,3,6,9,11,8,12,10,16,5,13,23,24,15,17,22,19
B≔1,14,7,21,2,18,4,203,6,9,11,8,12,10,165,13,23,24,15,17,22,19
GroupOrder⁡A,GroupOrder⁡B
8,8
H≔AintersectB
H≔1,23,84,75,156,129,1011,1613,1714,1819,2420,2122,23,1,4,2,73,10,8,95,22,15,236,16,12,1113,19,17,2414,20,18,21
GroupOrder⁡H
4
Intersection⁡H
1,23,84,75,156,129,1011,1613,1714,1819,2420,2122,23,1,4,2,73,10,8,95,22,15,236,16,12,1113,19,17,2414,20,18,21
A≔Group⁡Perm⁡2,4,3,5,Perm⁡2,4,6
A≔2,43,5,2,4,6
B≔Group⁡Perm⁡1,3,2,6,Perm⁡2,6,4
B≔1,32,6,2,6,4
C≔Group⁡Perm⁡1,3,2,4,Perm⁡2,6,4
C≔1,32,4,2,6,4
J≔Intersection⁡A,B,C
J≔2,6,4
GroupOrder⁡J
3
The GroupTheory[Intersection] command was introduced in Maple 17.
For more information on Maple 17 changes, see Updates in Maple 17.
See Also
GroupTheory[PermutationGroup]
Download Help Document