IsAlternating - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

IsAlternating

  

Monte-Carlo test for alternating groups

  

IsSymmetric

  

Monte-Carlo test for symmetric groups

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

IsAlternating( G )

IsAlternating( G, confidence = val )

IsSymmetric( G )

IsSymmetric( G, confidence = val )

Parameters

 G

-

a permutation group

val

-

confidence level; a number between 0 and 1

Description

• 

The commands IsAlternating( G ) and IsSymmetric( G ) provide one-sided Monte-Carlo tests for a permutation group G to be, respectively, an alternating or symmetric group in its natural action on the set 1,2,,n, where n is the degree of G.

• 

If the command returns the value true, then the result is guaranteed to be correct.  However, it may return the value false incorrectly, with small probability.

• 

The level of confidence can be controlled by means of the confidence option. By default, the confidence level is set to 999999/1000000, which is the likelihood that either command IsAlternating or IsSymmetric returns the value false when the input group is actually a symmetric or alternating group, respectively. A higher value of the confidence option requires an increase in running time. Likewise, setting the confidence option to a lower value reduces the running time, but increases the chance that an incorrect false value is returned.

Examples

withGroupTheory:

Note these first examples are abstractly isomorphic to the indicated group, but are not permutation equivalent to it in its natural action.

AreIsomorphicSmallGroup12,3,Alt4

true

(1)

IsAlternatingSmallGroup12,3

false

(2)

Construct the regular representation of the symmetric group of degree 3.

GGroupPerm1,2,3,6,4,5,Perm1,3,4,2,5,6

G1,23,64,5,1,3,42,5,6

(3)

AreIsomorphicG,Symm3

true

(4)

IsSymmetricG

false

(5)

GGroupseqPermi,i+1,i+2,i=1..8

G1,2,3,2,3,4,3,4,5,4,5,6,5,6,7,6,7,8,7,8,9,8,9,10

(6)

IsAlternatingG

true

(7)

IsSymmetricGroupseqPermi,i+1,i=1..9

true

(8)

By decreasing the value of the confidence option to 1/2, we can virtually guarantee incorrect answers some of the time.

seqIsAlternatingG,:-confidence=12,i=1..10

true,true,true,true,true,true,true,true,true,true

(9)

Compatibility

• 

The GroupTheory[IsAlternating] and GroupTheory[IsSymmetric] commands were introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory[SymmetricGroup]

GroupTheory[AlternatingGroup]