GroupTheory
IsCaminaGroup
determine whether a group is a Camina group
Calling Sequence
Parameters
Description
Examples
Compatibility
IsCaminaGroup( G )
G
-
a permutation group
A non-abelian group G is a Camina group if it is not perfect and if, for each g∈G∖H we have gG=g·H, where H is the derived subgroup of G. That is, the conjugacy class of each element of G not in the derived subgroup is equal to its coset of the derived subgroup. (In any group G, the conjugacy class gG of any element g is contained in the coset gH of the derived subgroup.)
Examples of Camina groups are some (but not all) Frobenius groups and extraspecial p-groups, for prime numbers p.
The IsCaminaGroup( G ) command determines, for a permutation group G, whether G is a Camina group. It returns true if G is a Camina group, and returns false otherwise.
with⁡GroupTheory:
IsCaminaGroup⁡QuaternionGroup⁡
true
IsExtraspecial⁡QuaternionGroup⁡
IsCaminaGroup⁡QuaternionGroup⁡4
false
IsExtraspecial⁡QuaternionGroup⁡4
IsCaminaGroup⁡DihedralGroup⁡4
IsCaminaGroup⁡DihedralGroup⁡32
IsCaminaGroup⁡SmallGroup⁡72,41
IsCaminaGroup⁡FrobeniusGroup⁡968,2
IsCaminaGroup⁡FrobeniusGroup⁡300,1
G≔SmallGroup⁡300,23:
IsCaminaGroup⁡G
IsFrobeniusGroup⁡G
H≔DerivedSubgroup⁡G:
cc≔remove⁡g↦ginH,map⁡Representative,ConjugacyClasses⁡G:
nops⁡cc
4
nops⁡remove⁡g↦Elements⁡ConjugacyClass⁡g,G=Elements⁡LeftCoset⁡g,H,cc
2
The GroupTheory[IsCaminaGroup] command was introduced in Maple 2022.
For more information on Maple 2022 changes, see Updates in Maple 2022.
See Also
GroupTheory[IsFrobeniusGroup]
GroupTheory[IsPGroup]
Download Help Document