GroupTheory
IsFrobeniusPermGroup
determine whether a group is a Frobenius permutation group
IsFrobeniusGroup
determine whether a group is a Frobenius group
FrobeniusKernel
compute the Frobenius kernel of a Frobenius group
FrobeniusComplement
compute the Frobenius complement of a Frobenius group
FrobeniusPermRep
compute a Frobenius permutation group isomorphic to a given Frobenius group
Calling Sequence
Parameters
Description
Examples
Compatibility
IsFrobeniusPermGroup( G )
IsFrobeniusGroup( G )
FrobeniusKernel( G )
FrobeniusComplement( G )
FrobeniusPermRep( G )
G
-
a permutation group
A permutation group G is a Frobenius group if it is transitive, has a non-trivial point stabilizer, and no non-trivial element of G fixes more than one point.
The IsFrobeniusPermGroup( G ) command returns true if the permutation group G is a Frobenius group, and returns false otherwise.
An abstract group G is a Frobenius group if it has a proper, non-trivial malnormal subgroup self-centralizing subgroup H, called a Frobenius complement. In this case, G has a normal (even characteristic) subgroup K, called the Frobenius kernel, consisting of the identity element of G and the elements of G that do not belong to any conjugate of H in G.
The IsFrobeniusGroup( G ) command returns true if G is a Frobenius group as an abstract group, and returns false otherwise.
The two definitions are equivalent in the following sense. If G is a Frobenius permutation group, then G is Frobenius as an abstract group, with the stabilizer of a point being a Frobenius complement in G. Conversely, if G is Frobenius as an abstract group, then the action of G on the cosets of a Frobenius complement is faithful and is Frobenius as a permutation group, and so G is isomorphic to the corresponding Frobenius permutation group,
The Frobenius kernel of a Frobenius group G is uniquely defined, because a group can be a Frobenius group in at most one way. The Frobenius complement of a Frobenius group G is well-defined up to conjugacy in G.
If G is a Frobenius group, the FrobeniusKernel( G ) command returns the Frobenius kernel of G. If G is not Frobenius, an exception is raised.
If G is a Frobenius group, the FrobeniusComplement( G ) command returns a Frobenius complement of G. If G is not Frobenius, an exception is raised.
For a Frobenius group G, the FrobeniusPermRep( G ) command returns a Frobenius permutation group isomorphic to G. It is permutation isomorphic to the action on G on the cosets of a Frobenius complement in G.
with⁡GroupTheory:
The smallest Frobenius group is the symmetric group of degree 3.
IsFrobeniusGroup⁡Symm⁡3
true
IsFrobeniusPermGroup⁡Symm⁡3
FrobeniusKernel⁡Symm⁡3
1,2,3
FrobeniusComplement⁡Symm⁡3
1,2
IsMalnormal⁡FrobeniusComplement⁡Symm⁡3,Symm⁡3
A different permutation group isomorphic to the symmetric group of degree 3 is a Frobenius group, but is not Frobenius as a permutation group.
G≔Group⁡Perm⁡1,2,3,6,4,5,Perm⁡1,3,4,2,5,6
G≔1,23,64,5,1,3,42,5,6
AreIsomorphic⁡G,Symm⁡3
IsFrobeniusGroup⁡G
IsFrobeniusPermGroup⁡G
false
FrobeniusKernel⁡G
Fitt⁡1,23,64,5,1,3,42,5,6
FrobeniusComplement⁡G
1,62,43,5
H≔FrobeniusPermRep⁡G
H≔2,3,1,3,2
IsFrobeniusPermGroup⁡H
AreIsomorphic⁡H,G
The dihedral group Dn is Frobenius if, and only, if, n is odd.
IsFrobeniusGroup⁡DihedralGroup⁡4
IsFrobeniusGroup⁡DihedralGroup⁡5
IsFrobeniusGroup⁡DihedralGroup⁡6
IsFrobeniusGroup⁡PSL⁡2,3
IsFrobeniusPermGroup⁡AGL⁡1,243
We construct here a Frobenius subgroup of order 110 in the first Janko group.
a,b≔op⁡Generators⁡JankoGroup⁡1:
u≔a·b−2·b·a·b:PermOrder⁡u
2
v≔a·b·b−2·a·b·a·b·a·b·b·a·b·a·b·b3·a·b·b2:PermOrder⁡v
5
G≔Group⁡u,v:GroupOrder⁡G
110
However, this is not a Frobenius action; to get a Frobenius permutation group, use FrobeniusPermRep.
P≔FrobeniusPermRep⁡G
P≔1,52,43,106,117,8,1,8,7,9,62,11,4,3,5
IsFrobeniusPermGroup⁡P
Now we can compute the Frobenius kernel and complement, and determine their orders.
K≔FrobeniusKernel⁡P
K≔1,6,4,7,10,3,8,2,11,5,9
GroupOrder⁡K
11
C≔FrobeniusComplement⁡P
C≔2,6,11,5,8,10,9,7,4,3
GroupOrder⁡C
10
IsMalnormal⁡C,P
Of course, we obtain the same result by computing the Frobenius kernel and complement of G itself.
K≔FrobeniusKernel⁡G
K≔Fitt⁡1,2552,2603,1814,2475,536,887,2188,1839,22110,1711,6712,13313,5014,23915,3916,4318,24119,6120,20221,8522,26223,22724,13225,8626,21727,26128,12329,7730,12431,14932,10233,18434,15335,8336,12537,23838,20940,16841,24942,21544,16445,16746,14548,23249,19451,17052,6254,7455,13856,19957,23658,20359,23160,6963,26664,16565,25468,20170,16971,14872,7973,19875,22676,17378,16680,15081,9682,19384,9989,10790,11091,16392,20693,14394,17895,23797,24598,174100,242101,126103,187104,189105,157106,185109,155111,213112,195114,176115,191116,171117,252118,250119,253120,136121,161122,140127,265128,208129,147131,223134,200135,152137,224139,192141,207142,258144,244146,159151,158154,233156,162160,196172,263175,228177,222179,230180,220182,204190,259197,225205,256210,240211,212216,257219,248229,264234,246243,251,1,26,257,192,2412,83,3,119,1804,94,63,13,2175,64,196,193,1066,211,40,136,827,126,264,141,2098,244,163,59,2439,142,16,232,10910,88,99,165,11111,70,250,265,8712,123,226,134,6614,21,29,216,4915,201,219,221,25517,28,53,179,12118,44,43,190,17519,159,122,157,10820,150,45,81,5422,48,234,57,10723,154,224,252,5824,61,168,213,24025,100,67,253,26127,80,35,95,3031,186,74,263,12732,156,76,223,24733,68,246,207,5034,77,62,178,23636,259,194,197,3837,195,102,152,25839,71,42,135,8541,153,177,148,7846,72,131,176,13947,151,167,98,9751,181,245,118,21452,155,162,65,12555,91,189,144,17156,104,191,90,11660,75,130,120,21069,235,230,160,10573,228,249,79,26284,146,161,133,13286,149,174,113,22089,238,114,229,23993,227,205,117,20696,124,172,260,170101,248,145,254,222103,203,137,128,204110,251,231,183,199112,166,266,164,218140,188,185,212,200143,182,208,187,256158,242,237,169,202173,184,198,215,225
C≔FrobeniusComplement⁡G
C≔1,1533,984,716,1087,2238,559,6310,21011,17412,15713,7914,24915,21816,2917,18818,13519,7521,5022,3923,11724,10625,12726,3727,26328,6030,7031,5132,4933,4334,20935,16736,21738,25840,17941,15642,26444,25445,14946,19747,26148,24752,11253,6154,11956,18957,14558,22759,9162,20164,13065,8566,21367,8168,17669,18572,14273,19574,9776,25577,13178,24680,8683,8784,23588,12389,17390,25192,13793,18294,22995,18199,212100,170101,216102,248103,154104,171105,240107,164109,215110,138111,160113,124114,190115,163116,144118,220120,140122,196125,262126,232128,224129,147133,193134,230136,161139,166141,241143,233146,200148,259150,214151,265152,236155,192158,260159,165162,207169,245172,250175,178177,238180,202183,191184,222186,237187,206194,234198,257199,243203,208204,256205,252211,226219,228221,239225,266231,244,1,207,166,62,2232,20,253,96,2423,87,158,220,304,125,21,41,2345,132,82,121,1686,193,140,159,2267,153,162,139,2018,56,244,138,909,42,247,218,8910,196,130,61,18511,35,25,47,5412,111,146,235,10613,221,175,176,2914,102,198,177,25515,173,63,264,4816,79,239,178,6817,161,134,212,6018,94,148,37,20919,88,240,66,17922,44,152,219,5224,157,160,200,8426,34,135,229,25927,169,186,170,15128,188,136,230,9931,86,250,124,8132,232,77,38,14533,85,241,109,10136,142,266,192,7339,254,236,228,11240,75,123,105,21343,65,141,215,21645,214,180,74,9546,78,190,184,10749,126,131,258,5750,156,194,71,26251,80,172,113,6753,69,210,122,6455,189,231,110,25158,256,92,224,18759,191,116,243,16370,98,83,260,11872,225,155,195,21776,249,248,257,23891,183,144,199,11593,103,205,203,23397,181,149,150,202100,265,263,245,237108,133,120,165,211114,222,164,197,246119,174,167,127,261128,206,227,204,137143,182,154,252,208
IsMalnormal⁡C,G
The Frobenius complement in a Frobenius dihedral group is a subgroup of order two.
G≔DihedralGroup⁡7:
C≔1,62,53,4
The Mathieu group of degree 10 has a point stabilizer of order 72. (This is sometimes referred to as a Mathieu group of degree 9.)
G≔MathieuGroup⁡10
G≔M10
S≔Stabilizer⁡1,G
S≔2,73,85,106,9,2,4,8,53,9,6,7,2,7,3,104,5,6,8
GroupOrder⁡S
72
This point stabilizer is a Frobenius group.
IsFrobeniusGroup⁡S
Moreover, the action is Frobenius.
IsFrobeniusPermGroup⁡S
The Frobenius complement in S is a quaternion group.
AreIsomorphic⁡FrobeniusComplement⁡S,QuaternionGroup⁡
The GroupTheory[IsFrobeniusPermGroup], GroupTheory[IsFrobeniusGroup], GroupTheory[FrobeniusKernel], GroupTheory[FrobeniusComplement] and GroupTheory[FrobeniusPermRep] commands were introduced in Maple 2019.
For more information on Maple 2019 changes, see Updates in Maple 2019.
See Also
GroupTheory[IsNilpotent]
Download Help Document