GroupTheory
IsMalnormal
test whether one group is a malnormal subgroup of another
Calling Sequence
Parameters
Description
Examples
Compatibility
IsMalnormal( H, G )
H
-
a permutation group
G
A group H is a malnormal subgroup of a group G if H is a subgroup of G, and if it is has trivial intersection with each of its conjugates by elements not in H: H∩Hg = 1, for all g in G∖H.
The trivial subgroup and G itself are malnormal in G, but any proper non-trivial subgroup of G cannot be both normal and malnormal in G.
A group that has a proper non-trivial malnormal subgroup is a Frobenius group, and the malnormal subgroup is a Frobenius complement.
The IsMalnormal( H, G ) command tests whether the group H is a malnormal subgroup of the group G. It returns true if H is malnormal in G, and returns false otherwise. For some pairs H and G of groups, the value FAIL may be returned if IsMalnormal cannot determine whether H is a malnormal subgroup of G.
with⁡GroupTheory:
G≔Symm⁡3
G≔S3
H≔Subgroup⁡Perm⁡1,2,G
H≔1,2
IsMalnormal⁡H,G
true
H≔Subgroup⁡Perm⁡1,2,3,G
H≔1,2,3
false
IsNormal⁡H,G
IsMalnormal⁡TrivialSubgroup⁡G,G
IsMalnormal⁡G,G
G≔SmallGroup⁡72,41:
IsFrobeniusGroup⁡G
H≔FrobeniusComplement⁡G:
G≔DihedralGroup⁡16
G≔D16
H≔Group⁡Perm⁡1,9,2,8,3,7,4,6,10,16,11,15,12,14
H≔1,92,83,74,610,1611,1512,14
IsSubgroup⁡H,G
G≔PSL⁡2,17:
S≔SylowSubgroup⁡3,G:
GroupOrder⁡S
9
IsCyclic⁡S
IsMalnormal⁡S,G
The GroupTheory[IsMalnormal] command was introduced in Maple 2019.
For more information on Maple 2019 changes, see Updates in Maple 2019.
See Also
GroupTheory[FrobeniusComplement]
GroupTheory[IsFrobenius]
GroupTheory[IsNormal]
GroupTheory[IsSubgroup]
GroupTheory[SymmetricGroup]
Download Help Document