GroupTheory
IsNormal
test whether one group is contained as a normal subgroup of another
Calling Sequence
Parameters
Description
Examples
Compatibility
IsNormal( H, G )
H
-
a group
G
A group H is a normal subgroup of a group G if H is a subgroup of G, and if it is equal to each of its conjugates: H=Hg, for all g in G.
The IsNormal( H, G ) command tests whether the group H is a normal subgroup of the group G. It returns true if H is normal in G, and returns false otherwise. For some pairs H and G of groups, the value FAIL may be returned if IsNormal cannot determine whether H is a normal subgroup of G.
with⁡GroupTheory:
G≔Symm⁡4
G≔S4
H≔Alt⁡4
H≔A4
IsNormal⁡H,G
true
IsNormal⁡Alt⁡5,G
false
IsSubgroup⁡Alt⁡5,G
G≔Symm⁡5
G≔S5
H≔DihedralGroup⁡5
H≔D5
IsSubgroup⁡H,G
The GroupTheory[IsNormal] command was introduced in Maple 17.
For more information on Maple 17 changes, see Updates in Maple 17.
See Also
GroupTheory[AlternatingGroup]
GroupTheory[DihedralGroup]
GroupTheory[IsSubgroup]
GroupTheory[SymmetricGroup]
Download Help Document