GroupTheory
IsPSoluble
attempt to determine whether a group is p-soluble
Calling Sequence
Parameters
Description
Examples
Compatibility
IsPSoluble( p, G )
p
-
: prime : a prime number
G
: PermutationGroup : a finite permutation group
For a prime number p, a finite group G is p-soluble if it has a subnormal series every quotient of which is either a p-group or has order coprime to p.
Every finite soluble group is p-soluble for every prime number p.
The IsPSoluble( p, G ) command returns true if the group G is p-soluble and returns the value false if it is not.
The group G must be an instance of a permutation group.
with⁡GroupTheory:
IsPSoluble⁡2,QuaternionGroup⁡
true
IsPSoluble⁡3,QuaternionGroup⁡
G≔GL⁡3,3:
map⁡IsPSoluble,2,3,11,G
false,false,true
G≔FrobeniusGroup⁡14520,2:
IsSoluble⁡G
false
map⁡IsPSoluble,2,3,5,11,FrobeniusGroup⁡14520,2
false,false,false,true
IsPSoluble⁡2,PerfectGroup⁡936000,2
The GroupTheory[IsPSoluble] command was introduced in Maple 2024.
For more information on Maple 2024 changes, see Updates in Maple 2024.
See Also
GroupTheory[IsSoluble]
Download Help Document