GroupTheory
IsRegular
determine whether a permutation group is regular
IsSemiRegular
determine whether a permutation group is semi-regular
Calling Sequence
Parameters
Description
Examples
IsRegular( G, dom )
IsSemiRegular( G, dom )
G
-
: PermutationGroup : a permutation group
dom
: {set,list}(posint) : (optional) a domain on which G acts
A permutation group G (acting on the set1,2,…,n is semi-regular if the stabilizer of any point is trivial. If, in addition, G acts transitively, then it is said to be regular. This means that the action of G is permutation isomorphic to the action of G on itself by (right) translation.
Every Abelian transitive permutation group is regular.
The IsRegular( G ) command returns true if the permutation group G is regular, and returns false otherwise. The IsSemiRegular( G ) command returns true if the permutation group G is semi-regular, and returns false otherwise. The group G must be an instance of a permutation group.
The dom option can be used to specify the domain on which G acts.
For regularity in the sense of P. Hall, for groups of prime power order, see GroupTheory[IsRegularPGroup].
with⁡GroupTheory:
G≔Group⁡Perm⁡1,2,Perm⁡1,2,3,4,5
G≔1,2,34,5,1,2
IsRegular⁡G
false
IsRegular⁡CyclicGroup⁡6
true
IsRegular⁡CyclicGroup⁡6,:-mindegree
G≔Group⁡Perm⁡1,2,3,4
G≔1,23,4
IsSemiRegular⁡G
G≔Group⁡Perm⁡1,2,3,4,5
G≔1,23,4,5
G≔Group⁡Perm⁡2,3,4,Perm⁡2,3
G≔2,3,4,2,3
IsSemiRegular⁡Group⁡Perm⁡2,3,4,Perm⁡5,6,7
G≔Group⁡Perm⁡1,2,3,4,5,6
G≔1,2,34,5,6
G≔Group⁡Perm⁡1,2,3,Perm⁡4,5,6
G≔1,2,3,4,5,6
IsRegular⁡G,1,2,3
IsRegular⁡G,4,5,6
The symmetric group in its natural permutation representation is not regular.
IsRegular⁡Symm⁡3
But there is a regular permutation representation of degree 6 (the order of the group).
IsRegular⁡TransitiveGroup⁡6,2
AreIsomorphic⁡Symm⁡3,TransitiveGroup⁡6,2
The quaternion group of order 8 has a regular representation of degree 8.
AreIsomorphic⁡TransitiveGroup⁡8,5,QuaternionGroup⁡
IsRegular⁡TransitiveGroup⁡8,5
We construct a diagonal embedding into the direct square.
G≔DirectProduct⁡TransitiveGroup⁡8,5,TransitiveGroup⁡8,5
G≔1,2,3,84,5,6,7,1,7,3,52,6,8,4,9,10,11,1612,13,14,15,9,15,11,1310,14,16,12
gens≔Generators⁡G:
This is the diagonal subgroup.
H≔Subgroup⁡gens1·gens3,gens2·gens4,G
H≔1,2,3,84,5,6,79,10,11,1612,13,14,15,1,7,3,52,6,8,49,15,11,1310,14,16,12
AreIsomorphic⁡H,QuaternionGroup⁡
IsSemiRegular⁡H
Frobenius groups are never regular.
IsRegular⁡FrobeniusGroup⁡15000,3
Let's find all the regular groups of degree 34. First, we create an iterator for all the transitive groups of that degree.
it≔AllTransitiveGroups⁡34,output=iterator
it≔⟨Transitive Groups Iterator: 34/1 .. 34/115⟩
Create an Array in which to store the transitive group IDs of those that are found to be regular.
A≔Array⁡:
Now iterate over the groups and check for regularity. Since we already know that the groups are transitive, we avoid the redundant transitivity check and test only for semi-regularity.
forid,GinitdoifIsSemiRegular⁡Gthen`,=`⁡A,idendifenddo:
seq⁡A
34,1,34,2
See Also
GroupTheory[CyclicGroup]
GroupTheory[FrobeniusGroup]
GroupTheory[Group]
GroupTheory[IsRegularPGroup]
GroupTheory[IsTransitive]
GroupTheory[Stabilizer]
GroupTheory[SymmetricGroup]
GroupTheory[TransitiveGroup]
Perm
Download Help Document