GroupTheory
IsSimple
determine whether a group is simple
Calling Sequence
Parameters
Description
Examples
Compatibility
IsSimple( G )
G
-
a group
A group G is simple if it has at least two members, and the only normal subgroups of G are G and the trivial subgroup. Alternatively, the group G is simple if it has no proper homomorphic images.
The IsSimple( G ) command returns true if the group G is simple, and returns false otherwise.
with⁡GroupTheory:
IsSimple⁡CyclicGroup⁡7
true
IsSimple⁡CyclicGroup⁡12
false
IsSimple⁡Alt⁡4
IsSimple⁡Alt⁡5
IsSimple⁡Alt⁡nassumingn::posint,4<n
IsSimple⁡PSL⁡2,2
IsSimple⁡PSL⁡2,3
IsSimple⁡PSL⁡3,3
IsSimple⁡PGO⁡−1,4,7
IsSimple⁡PSO⁡−1,4,7
IsSimple⁡PSL⁡n,qassumingq::primepower,3<q
IsSimple⁡HaradaNortonGroup⁡
IsSimple⁡DihedralGroup⁡30
IsSimple⁡Symm⁡8
IsSimple⁡OrthogonalGroup⁡O8+(3)
The GroupTheory[IsSimple] command was introduced in Maple 17.
For more information on Maple 17 changes, see Updates in Maple 17.
See Also
GroupTheory[AlternatingGroup]
GroupTheory[CyclicGroup]
GroupTheory[DihedralGroup]
GroupTheory[HaradaNortonGroup]
GroupTheory[PSL]
GroupTheory[SymmetricGroup]
Download Help Document