GroupTheory
IsSpecial
determine whether a group is a special p-group, for some prime p
IsExtraspecial
determine whether a group is an extraspecial p-group, for some prime p
Calling Sequence
Parameters
Description
Examples
IsSpecial( G )
IsExtraspecial( G )
G
-
: PermutationGroup : a permutation group
Let G be a finite of prime-power order. We say that G is special if either G is elementary abelian, or if the center, derived subgroup, and Frattini subgroup of G all coincide and is elementary abelian. If, in addition, these coindicent subgroups of G have prime order, then G is said to be extraspecial. Note that non-trivial abelian groups are not extraspecial, since their centers and derived subgroups cannot be equal.
The IsSpecial( G ) command returns true if the permutation group G is a special p-group, for some prime number p.
The IsExtraspecial( G ) command returns true if the permutation group G is an extraspecial p-group, for some prime number p.
Both commands return false if the group G is not a p-group for any prime number p.
with⁡GroupTheory:
IsSpecial⁡Alt⁡4
false
IsSpecial⁡CyclicGroup⁡3
true
IsExtraspecial⁡CyclicGroup⁡3
IsSpecial⁡CyclicGroup⁡4
IsSpecial⁡ElementaryGroup⁡11,4
IsExtraspecial⁡ElementaryGroup⁡11,4
IsSpecial⁡DihedralGroup⁡4
IsSpecial⁡DihedralGroup⁡16
GroupOrder⁡Center⁡DihedralGroup⁡16
2
GroupOrder⁡DerivedSubgroup⁡DihedralGroup⁡16
8
IsSpecial⁡QuaternionGroup⁡
IsExtraspecial⁡QuaternionGroup⁡
map⁡GroupOrder,Center,DerivedSubgroup,FrattiniSubgroup⁡QuaternionGroup⁡
2,2,2
IsSpecial⁡SmallGroup⁡1331,5
IsSpecial⁡QuaternionGroup⁡5
IsExtraspecial⁡QuaternionGroup⁡5
GroupOrder⁡Center⁡QuaternionGroup⁡5
GroupOrder⁡DerivedSubgroup⁡QuaternionGroup⁡5
IsExtraspecial⁡SmallGroup⁡1331,5
IsSpecial⁡TrivialGroup⁡
IsExtraspecial⁡TrivialGroup⁡
G≔PSL⁡2,9:
g≔RandomInvolution⁡G:
C≔Centralizer⁡g,G
C≔2,53,4,1,63,4,2,34,5
IsExtraspecial⁡C
AreIsomorphic⁡C,DihedralGroup⁡4
See Also
GroupTheory[AlternatingGroup]
GroupTheory[DihedralGroup]
Download Help Document