IsExtraspecial - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

IsSpecial

  

determine whether a group is a special p-group, for some prime p

  

IsExtraspecial

  

determine whether a group is an extraspecial p-group, for some prime p

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

IsSpecial( G )

IsExtraspecial( G )

Parameters

G

-

: PermutationGroup : a permutation group

Description

• 

Let G be a finite of prime-power order. We say that G is special if either G is elementary abelian, or if the center, derived subgroup, and Frattini subgroup of G all coincide and is elementary abelian. If, in addition, these coindicent subgroups of G have prime order, then G is said to be extraspecial. Note that non-trivial abelian groups are not extraspecial, since their centers and derived subgroups cannot be equal.

• 

The IsSpecial( G ) command returns true if the permutation group G is a special p-group, for some prime number p.

• 

The IsExtraspecial( G ) command returns true if the permutation group G is an extraspecial p-group, for some prime number p.

• 

Both commands return false if the group G is not a p-group for any prime number p.

Examples

withGroupTheory:

IsSpecialAlt4

false

(1)

IsSpecialCyclicGroup3

true

(2)

IsExtraspecialCyclicGroup3

false

(3)

IsSpecialCyclicGroup4

false

(4)

IsSpecialElementaryGroup11,4

true

(5)

IsExtraspecialElementaryGroup11,4

false

(6)

IsSpecialDihedralGroup4

true

(7)

IsSpecialDihedralGroup16

false

(8)

GroupOrderCenterDihedralGroup16

2

(9)

GroupOrderDerivedSubgroupDihedralGroup16

8

(10)

IsSpecialQuaternionGroup

true

(11)

IsExtraspecialQuaternionGroup

true

(12)

mapGroupOrder,Center,DerivedSubgroup,FrattiniSubgroupQuaternionGroup

2,2,2

(13)

IsSpecialSmallGroup1331,5

true

(14)

IsSpecialQuaternionGroup5

false

(15)

IsExtraspecialQuaternionGroup5

false

(16)

GroupOrderCenterQuaternionGroup5

2

(17)

GroupOrderDerivedSubgroupQuaternionGroup5

8

(18)

IsExtraspecialSmallGroup1331,5

false

(19)

IsSpecialTrivialGroup

true

(20)

IsExtraspecialTrivialGroup

false

(21)

GPSL2,9:

gRandomInvolutionG:

CCentralizerg,G

C2,53,4,1,63,4,2,34,5

(22)

IsExtraspecialC

true

(23)

AreIsomorphicC,DihedralGroup4

true

(24)

See Also

GroupTheory

GroupTheory[AlternatingGroup]

GroupTheory[DihedralGroup]