Hypercenter - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

LowerCentralSeries

  

construct the lower central series of a group

  

UpperCentralSeries

  

construct the upper central series of a group

  

IsNilpotent

  

determine if a group is nilpotent

  

NilpotencyClass

  

find the nilpotency class of a group

  

NilpotentResidual

  

find the nilpotency residual of a group

  

Hypercenter

  

find the hypercenter of a group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

LowerCentralSeries( G )

UpperCentralSeries( G )

IsNilpotent( G )

NilpotencyClass( G )

NilpotentResidual( G )

Hypercenter( G )

Parameters

G

-

a permutation group

Description

• 

The lower central series of a group G is the descending normal series of G whose terms are the successive commutator subgroups, defined as follows. Let G0=G and, for 0<k, define Gk=G&comma;Gk1. The sequence

G=G0G1Gc

  

is called the lower central series of G. If the nilpotent residual Gc is the trivial group, then we say that G is nilpotent. In this case, the number c is called the nilpotency class of G, and the nilpotent residual Gc of G is the last term of the lower central series.

• 

The LowerCentralSeries( G ) command constructs the lower central series of a group G. The group G must be an instance of a permutation group.

• 

The IsNilpotent( G ) command determines whether a group G is nilpotent.

• 

The NilpotencyClass( G ) command returns the nilpotency class of G; that is, the length of the lower central series of G.

• 

The NilpotentResidual( G ) command returns the nilpotent residual of a group G.

• 

The upper central series of a group G is the ascending normal series of G whose terms are defined, recursively, as follows. Let G0=1 and, for 0<k, define Gk to be the pre-image, in G, of the center of the quotient group GGk1.  (Thus, G1 is just the center of G.) The sequence

1=G0G1Gc

  

is called the upper central series of G.

• 

The UpperCentralSeries( G ) command constructs the upper central series of a group G.

• 

The group G is nilpotent if, and only if, the last term Gc of the upper central series is equal to G. In general, the final term Gc is called the hypercenter of G.

• 

The Hypercenter( G ) command returns the hypercenter of a group G.

• 

The Hypercentre command is provided as an alias.

• 

The group G must be an instance of a permutation group.

• 

Both the lower and upper central series of G are represented by a series data structure which admits certain operations common to all series.  See GroupTheory[Series].

Examples

withGroupTheory&colon;

GPermutationGroupPerm1&comma;2&comma;3&comma;4&comma;5&comma;6&comma;7&comma;8&comma;Perm1&comma;7&comma;2&comma;6&comma;3&comma;5

G1&comma;2&comma;3&comma;4&comma;5&comma;6&comma;7&comma;8&comma;1&comma;72&comma;63&comma;5

(1)

LowerCentralSeriesG

1&comma;2&comma;3&comma;4&comma;5&comma;6&comma;7&comma;8&comma;1&comma;72&comma;63&comma;51&comma;2&comma;3&comma;4&comma;5&comma;6&comma;7&comma;8&comma;1&comma;72&comma;63&comma;5&comma;1&comma;2&comma;3&comma;4&comma;5&comma;6&comma;7&comma;8&comma;1&comma;72&comma;63&comma;51&comma;2&comma;3&comma;4&comma;5&comma;6&comma;7&comma;8&comma;1&comma;72&comma;63&comma;5&comma;1&comma;2&comma;3&comma;4&comma;5&comma;6&comma;7&comma;8&comma;1&comma;72&comma;63&comma;5&comma;1&comma;2&comma;3&comma;4&comma;5&comma;6&comma;7&comma;8&comma;1&comma;72&comma;63&comma;51&comma;2&comma;3&comma;4&comma;5&comma;6&comma;7&comma;8&comma;1&comma;72&comma;63&comma;5&comma;1&comma;2&comma;3&comma;4&comma;5&comma;6&comma;7&comma;8&comma;1&comma;72&comma;63&comma;5&comma;1&comma;2&comma;3&comma;4&comma;5&comma;6&comma;7&comma;8&comma;1&comma;72&comma;63&comma;5&comma;1&comma;2&comma;3&comma;4&comma;5&comma;6&comma;7&comma;8&comma;1&comma;72&comma;63&comma;5

(2)

IsNilpotentG

Warning, over-writing property `["LowerCentralSeries"]' with a different value

true

(3)

NilpotencyClassG

3

(4)

lcsLowerCentralSeriesAlternatingGroup4

lcsA4A4&comma;A4

(5)

typelcs&comma;NormalSeries

true

(6)

forHinlcsdoprintHenddo&colon;

A4

A4&comma;A4

(7)

IsNilpotentDihedralGroup8

true

(8)

IsNilpotentDihedralGroup12

false

(9)

NilpotentResidualDihedralGroup12

D12&comma;D12&comma;D12

(10)

UpperCentralSeriesDihedralGroup16

1&comma;92&comma;103&comma;114&comma;125&comma;136&comma;147&comma;158&comma;161&comma;92&comma;103&comma;114&comma;125&comma;136&comma;147&comma;158&comma;16&comma;1&comma;15&comma;13&comma;11&comma;9&comma;7&comma;5&comma;32&comma;16&comma;14&comma;12&comma;10&comma;8&comma;6&comma;4&comma;1&comma;7&comma;13&comma;3&comma;9&comma;15&comma;5&comma;112&comma;8&comma;14&comma;4&comma;10&comma;16&comma;6&comma;12&comma;1&comma;5&comma;9&comma;132&comma;6&comma;10&comma;143&comma;7&comma;11&comma;154&comma;8&comma;12&comma;16D16

(11)

UpperCentralSeriesDihedralGroup12

1&comma;72&comma;83&comma;94&comma;105&comma;116&comma;121&comma;10&comma;7&comma;42&comma;11&comma;8&comma;53&comma;12&comma;9&comma;6&comma;1&comma;72&comma;83&comma;94&comma;105&comma;116&comma;12

(12)

HypercenterDihedralGroup12

1&comma;10&comma;7&comma;42&comma;11&comma;8&comma;53&comma;12&comma;9&comma;6&comma;1&comma;72&comma;83&comma;94&comma;105&comma;116&comma;12

(13)

IsNilpotentDihedralGroup42kassumingk::posint

true

(14)

IsNilpotentDihedralGroup6kassumingk::posint

false

(15)

seqNilpotencyClassQuaternionGroupn&comma;n=3..10

2,3,4,5,6,7,8,9

(16)

Compatibility

• 

The GroupTheory[LowerCentralSeries] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory

GroupTheory[AlternatingGroup]

GroupTheory[DerivedSeries]

GroupTheory[PermutationGroup]

GroupTheory[Series]