GroupTheory
NumInvolutions
compute the number of involutions of a group
Calling Sequence
Parameters
Description
Examples
NumInvolutions(G)
G
-
: Group : a group object
An involution of a group G is an element of order equal to 2. The involutions of a group exert significant control over the structure of the group.
Note that a group of odd order has no involutions.
The NumInvolutions(G) command computes the number of involutions of the group G, if possible.
with⁡GroupTheory:
G≔DihedralGroup⁡5
G≔D5
NumInvolutions⁡G
5
NumInvolutions⁡QuaternionGroup⁡5
1
NumInvolutions⁡QuasicyclicGroup⁡2
NumInvolutions⁡FrobeniusGroup⁡21,1
0
NumInvolutions⁡SemiDihedralGroup⁡n
1+2⁢n
NumInvolutions⁡SL⁡2,5
NumInvolutions⁡Symm⁡30
606917269909048575
NumInvolutions⁡Alt⁡n
3⁢n4⁢hypergeom⁡1,1−n4,−n4+32,−n4+54,−n4+74,32,2,16
NumInvolutions⁡BabyMonster⁡
512299100893413375
it≔AllSmallGroups⁡12,form=permgroup,output=iterator
it≔⟨Small Groups Iterator: 12/1 .. 12/5⟩
G≔DirectProduct⁡seq⁡it:
511
See Also
GroupTheory[AlternatingGroup]
GroupTheory[BabyMonster]
GroupTheory[ConjugacyClasses]
GroupTheory[DihedralGroup]
GroupTheory[FrobeniusGroup]
GroupTheory[GroupOrder]
GroupTheory[QuasicyclicGroup]
GroupTheory[QuaternionGroup]
GroupTheory[SemiDihedralGroup]
GroupTheory[SpecialLinearGroup]
GroupTheory[SymmetricGroup]
with
Download Help Document