NumImvolutions - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

NumInvolutions

  

compute the number of involutions of a group

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

NumInvolutions(G)

Parameters

G

-

: Group : a group object

Description

• 

An involution of a group G is an element of order equal to 2. The involutions of a group exert significant control over the structure of the group.

• 

Note that a group of odd order has no involutions.

• 

The NumInvolutions(G) command computes the number of involutions of the group G, if possible.

Examples

withGroupTheory:

GDihedralGroup5

GD5

(1)

NumInvolutionsG

5

(2)

NumInvolutionsQuaternionGroup5

1

(3)

NumInvolutionsQuasicyclicGroup2

1

(4)

NumInvolutionsFrobeniusGroup21,1

0

(5)

NumInvolutionsSemiDihedralGroupn

1+2n

(6)

NumInvolutionsSL2,5

1

(7)

NumInvolutionsSymm30

606917269909048575

(8)

NumInvolutionsAltn

3n4hypergeom1,1n4,n4+32,n4+54,n4+74,32,2,16

(9)

NumInvolutionsBabyMonster

512299100893413375

(10)

itAllSmallGroups12,form=permgroup,output=iterator

it⟨Small Groups Iterator: 12/1 .. 12/5⟩

(11)

GDirectProductseqit:

NumInvolutionsG

511

(12)

See Also

GroupTheory

GroupTheory[AlternatingGroup]

GroupTheory[BabyMonster]

GroupTheory[ConjugacyClasses]

GroupTheory[DihedralGroup]

GroupTheory[FrobeniusGroup]

GroupTheory[GroupOrder]

GroupTheory[QuasicyclicGroup]

GroupTheory[QuaternionGroup]

GroupTheory[SemiDihedralGroup]

GroupTheory[SpecialLinearGroup]

GroupTheory[SymmetricGroup]

with