GroupTheory
NumSimpleGroups
return the number of simple groups of a given finite order
Calling Sequence
Parameters
Description
Examples
Compatibility
NumSimpleGroups( n )
n
-
a positive integer; usually, the order of a finite simple group
For a positive integer n, the NumSimpleGroups( n ) command returns the number of simple groups of order n.
For each prime integer n, the number of simple groups of order n is equal to 1. By the Feit-Thompson Theorem, if n is an odd composite integer, there are no simple groups of order n. The Artin-Tits theorem asserts that the number of simple groups of any given finite order is at most equal to 2. Therefore, the value returned by NumSimpleGroups( n ), for any positive integer n, is one of 0, 1 or 2.
with⁡GroupTheory:
NumSimpleGroups⁡1
0
NumSimpleGroups⁡13
1
NumSimpleGroups⁡15
NumSimpleGroups⁡360
NumSimpleGroups⁡20160
2
The GroupTheory[NumSimpleGroups] command was introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
GroupTheory[ClassifyFiniteSimpleGroup]
GroupTheory[IsSimple]
GroupTheory[IsSimpleNumber]
Download Help Document