GroupTheory
ProjectiveGeneralOrthogonalGroup
construct a permutation group isomorphic to a projective general orthogonal group
Calling Sequence
Parameters
Description
Examples
ProjectiveGeneralOrthogonalGroup(d, n, q)
PGO(d, n, q)
d
-
0, 1 or -1
n
a positive integer
q
power of a prime number
The projective general orthogonal group PGO⁡d,n,q is the quotient of the general orthogonal group GO⁡d,n,q by its center. The value of d must be 0 for odd n, or 1 or −1 for even n.
The ProjectiveGeneralOrthogonalGroup( d, n, q ) command returns a permutation group isomorphic to the general orthogonal group GO⁡d,n,q .
The PGO( d, n, q ) command is provided as an alias.
If the argument q is not a prime power (and is non-numeric), then a symbolic group representing PGO⁡d,n,q is returned.
with⁡GroupTheory:
G≔ProjectiveGeneralOrthogonalGroup⁡0,3,3
G≔PGO0,3,3
GroupOrder⁡G
24
AreIsomorphic⁡G,Symm⁡4
true
IsDihedral⁡PGO⁡−1,2,8
GroupOrder⁡PGO⁡0,5,q
igcd⁡2,q−1⁢q4⁢q2−1⁢q4−12q::oddigcd⁡2,q−1⁢q4⁢q2−1⁢q4−1otherwise
IsTrivial⁡PGO⁡0,1,3110
See Also
GroupTheory[GeneralOrthogonalGroup]
Download Help Document