GroupTheory
ProjectiveSpecialOrthogonalGroup
construct a permutation group isomorphic to a projective special orthogonal group
Calling Sequence
Parameters
Description
Examples
ProjectiveSpecialOrthogonalGroup(d, n, q)
PSO(d, n, q)
d
-
0, 1 or -1
n
a positive integer
q
power of a prime number
The projective special orthogonal group PSO⁡d,n,q is the quotient of the special orthogonal group SO⁡d,n,q by its center. The value of d must be 0 for odd n, or 1 or −1 for even n.
The ProjectiveSpecialOrthogonalGroup( d, n, q ) command returns a permutation group isomorphic to the projective special orthogonal group PSO⁡d,n,q .
The PSO( d, n, q ) command is provided as an alias.
If the argument q is not a prime power (and is non-numeric), then a symbolic group representing PSO⁡d,n,q is returned.
with⁡GroupTheory:
G≔ProjectiveSpecialOrthogonalGroup⁡−1,2,7
G≔PSO-1,2,7
GroupOrder⁡G
4
IsCyclic⁡G
true
G≔ProjectiveSpecialOrthogonalGroup⁡1,2,8
G≔PSO1,2,8
AreIsomorphic⁡G,DihedralGroup⁡7
G≔PSO⁡0,3,3
G≔PSO0,3,3
AreIsomorphic⁡G,Symm⁡4
G≔PSO⁡−1,4,9
G≔PSO-1,4,9
265680
IsSimple⁡G
G≔PSO⁡1,4,9
G≔PSO1,4,9
259200
false
See Also
GroupTheory[ProjectiveGeneralOrthogonalGroup]
GroupTheory[SpecialOrthogonalGroup]
Download Help Document