GroupTheory
ProjectiveSymplecticGroup
construct a permutation group isomorphic to a projective symplectic group
Calling Sequence
Parameters
Description
Examples
Compatibility
ProjectiveSymplecticGroup(n, q)
PSp(n, q)
n
-
an even positive integer
q
power of a prime number
The projective symplectic group PSp⁡n,q is the quotient of the symplectic group Sp⁡n,q by its center.
The groups PSp⁡n,q are simple except for the group PSp⁡2,2 , which is isomorphic to S3 , the group PSp⁡2,3 , isomorphic to A4 , and the group PSp⁡4,2 which is isomorphic to S6 .
Note that for n=2 the groups PSp⁡n,q and PSL⁡n,q are isomorphic.
The integer n must be even.
The ProjectiveSymplecticGroup( n, q ) command returns a permutation group isomorphic to the projective symplectic group PSp⁡n,q .
The PSp( n, q ) command is provided as an abbreviation.
In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.
with⁡GroupTheory:
G≔ProjectiveSymplecticGroup⁡2,64
G≔PSL2,64
Degree⁡G
65
GroupOrder⁡G
262080
IsTransitive⁡G
true
AreIsomorphic⁡PSp⁡2,2,Symm⁡3
AreIsomorphic⁡PSp⁡2,3,Alt⁡4
GroupOrder⁡PSp⁡4,3
25920
IsSimple⁡PSp⁡4,3
Display⁡CharacterTable⁡PSp⁡4,3
C
1a
2a
2b
3a
3b
3c
3d
4a
4b
5a
6a
6b
6c
6d
6e
6f
9a
9b
12a
12b
|C|
1
45
270
40
240
480
540
3240
5184
360
720
1440
2160
2880
χ__1
χ__2
5
−3
12−3⁢I⁢32
12+3⁢I⁢32
−1
2
0
−32+I⁢32
−32−I⁢32
I⁢3
−I⁢3
12+−32
12−−32
−12+I⁢32
−12−I⁢32
χ__3
χ__4
6
−2
3
χ__5
10
−72−3⁢I⁢32
−72+3⁢I⁢32
−12+−32
−12−−32
12−I⁢32
12+I⁢32
χ__6
χ__7
15
χ__8
7
χ__9
20
4
χ__10
24
8
χ__11
30
−32−9⁢I⁢32
−32+9⁢I⁢32
χ__12
χ__13
−10
χ__14
−8
−5−3⁢I⁢3
−5+3⁢I⁢3
1−I⁢3
1+I⁢3
χ__15
χ__16
92−9⁢I⁢32
92+9⁢I⁢32
−32+3⁢I⁢32
−32−3⁢I⁢32
χ__17
χ__18
60
−4
χ__19
64
χ__20
81
9
IsSimple⁡PSp⁡4,2
false
AreIsomorphic⁡PSp⁡4,2,Symm⁡6
The smallest simple group whose order is a perfect square.
G≔PSp⁡4,7
G≔PSp4,7
IsSimple⁡G
GroupOrder⁡G=117602
138297600=138297600
ClassifyFiniteSimpleGroup⁡PSp⁡2,4
CFSG: Alternating Group A5
GroupOrder⁡PSp⁡4,q
q4⁢q2−1⁢q4−1igcd⁡2,q−1
IsSimple⁡PSp⁡n,q
falseq=2falseq=3trueotherwisen=2falseq=2trueotherwisen=4trueotherwise
The GroupTheory[ProjectiveSymplecticGroup] command was introduced in Maple 17.
For more information on Maple 17 changes, see Updates in Maple 17.
The GroupTheory[ProjectiveSymplecticGroup] command was updated in Maple 2020.
See Also
GroupTheory[Degree]
GroupTheory[GroupOrder]
GroupTheory[IsTransitive]
GroupTheory[ProjectiveSpecialLinearGroup]
GroupTheory[SymplecticGroup]
Download Help Document