ProjectiveSymplecticGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : ProjectiveSymplecticGroup

GroupTheory

  

ProjectiveSymplecticGroup

  

construct a permutation group isomorphic to a projective symplectic group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

ProjectiveSymplecticGroup(n, q)

PSp(n, q)

Parameters

n

-

an even positive integer

q

-

power of a prime number

Description

• 

The projective symplectic group PSpn,q  is the quotient of the symplectic group Spn,q  by its center.

• 

The groups PSpn,q  are simple except for the group PSp2,2  , which is isomorphic to S3 , the group PSp2,3  , isomorphic to A4 , and the group PSp4,2  which is isomorphic to S6 .

• 

Note that for n=2 the groups PSpn,q  and PSLn,q  are isomorphic.

• 

The integer n must be even.

• 

The ProjectiveSymplecticGroup( n, q ) command returns a permutation group isomorphic to the projective symplectic group PSpn,q  .

• 

The PSp( n, q ) command is provided as an abbreviation.

• 

In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.

Examples

withGroupTheory:

GProjectiveSymplecticGroup2,64

GPSL2,64

(1)

DegreeG

65

(2)

GroupOrderG

262080

(3)

IsTransitiveG

true

(4)

AreIsomorphicPSp2,2,Symm3

true

(5)

AreIsomorphicPSp2,3,Alt4

true

(6)

GroupOrderPSp4,3

25920

(7)

IsSimplePSp4,3

true

(8)

DisplayCharacterTablePSp4,3

C

1a

2a

2b

3a

3b

3c

3d

4a

4b

5a

6a

6b

6c

6d

6e

6f

9a

9b

12a

12b

|C|

1

45

270

40

40

240

480

540

3240

5184

360

360

720

720

1440

2160

2880

2880

2160

2160

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

χ__1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

χ__2

5

−3

1

123I32

12+3I32

−1

2

1

−1

0

32+I32

32I32

I3

−I3

0

1

12+−32

12−32

12+I32

12I32

χ__3

5

−3

1

12+3I32

123I32

−1

2

1

−1

0

32I32

32+I32

−I3

I3

0

1

12−32

12+−32

12I32

12+I32

χ__4

6

−2

2

−3

−3

3

0

2

0

1

1

1

1

1

−2

−1

0

0

−1

−1

χ__5

10

2

−2

723I32

72+3I32

1

1

2

0

0

123I32

12+3I32

−1

−1

−1

1

12+−32

12−32

12I32

12+I32

χ__6

10

2

−2

72+3I32

723I32

1

1

2

0

0

12+3I32

123I32

−1

−1

−1

1

12−32

12+−32

12+I32

12I32

χ__7

15

−1

−1

6

6

3

0

3

−1

0

2

2

−1

−1

2

−1

0

0

0

0

χ__8

15

7

3

−3

−3

0

3

−1

1

0

1

1

−2

−2

1

0

0

0

−1

−1

χ__9

20

4

4

2

2

5

−1

0

0

0

−2

−2

1

1

1

1

−1

−1

0

0

χ__10

24

8

0

6

6

0

3

0

0

−1

2

2

2

2

−1

0

0

0

0

0

χ__11

30

6

2

329I32

32+9I32

−3

0

2

0

0

32I32

32+I32

−I3

I3

0

−1

0

0

12+I32

12I32

χ__12

30

6

2

32+9I32

329I32

−3

0

2

0

0

32+I32

32I32

I3

−I3

0

−1

0

0

12I32

12+I32

χ__13

30

−10

2

3

3

3

3

−2

0

0

−1

−1

−1

−1

−1

−1

0

0

1

1

χ__14

40

−8

0

53I3

5+3I3

−2

1

0

0

0

1I3

1+I3

1+I3

1I3

1

0

12−32

12+−32

0

0

χ__15

40

−8

0

5+3I3

53I3

−2

1

0

0

0

1+I3

1I3

1I3

1+I3

1

0

12+−32

12−32

0

0

χ__16

45

−3

−3

929I32

92+9I32

0

0

1

1

0

32+3I32

323I32

0

0

0

0

0

0

12I32

12+I32

χ__17

45

−3

−3

92+9I32

929I32

0

0

1

1

0

323I32

32+3I32

0

0

0

0

0

0

12+I32

12I32

χ__18

60

−4

4

6

6

−3

−3

0

0

0

2

2

−1

−1

−1

1

0

0

0

0

χ__19

64

0

0

−8

−8

4

−2

0

0

−1

0

0

0

0

0

0

1

1

0

0

χ__20

81

9

−3

0

0

0

0

−3

−1

1

0

0

0

0

0

0

0

0

0

0

IsSimplePSp4,2

false

(9)

AreIsomorphicPSp4,2,Symm6

true

(10)

The smallest simple group whose order is a perfect square.

GPSp4,7

GPSp4,7

(11)

IsSimpleG

true

(12)

GroupOrderG=117602

138297600=138297600

(13)

ClassifyFiniteSimpleGroupPSp2,4

CFSG: Alternating Group A5

(14)

GroupOrderPSp4,q

q4q21q41igcd2,q1

(15)

IsSimplePSpn,q

falseq=2falseq=3trueotherwisen=2falseq=2trueotherwisen=4trueotherwise

(16)

Compatibility

• 

The GroupTheory[ProjectiveSymplecticGroup] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

• 

The GroupTheory[ProjectiveSymplecticGroup] command was updated in Maple 2020.

See Also

GroupTheory[Degree]

GroupTheory[GroupOrder]

GroupTheory[IsTransitive]

GroupTheory[ProjectiveSpecialLinearGroup]

GroupTheory[SymplecticGroup]