Ree2F4 - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

Ree2F4

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Ree2F4( q )

Parameters

q

-

{posint,algebraic}; an odd power of 2, or an expression

Description

• 

The Ree groups F42q , for an odd power q of 2, are a series of (typically) simple groups of Lie type, first constructed by R. Ree. They are defined only for q=22e+1 an odd power of 2 (where, here, 0e).

• 

The Ree2F4( q ) command constructs a symbolic group representing the large Ree group F42q .

• 

The large Ree groups F42q are simple for all odd powers q of 2 greater than 2, but F422 is not simple. Its derived subgroup is the simple Tits group.

Examples

withGroupTheory:

GRee2F42

GF422

(1)

GroupOrderG

35942400

(2)

IsSimpleG

false

(3)

IsSimpleRee2F48

true

(4)

MinPermRepDegreeRee2F48

1210323465

(5)

IsSimpleRee2F4q

falseq=2trueotherwise

(6)

ClassNumberRee2F4q

q4+4q2+17

(7)

Compatibility

• 

The GroupTheory[Ree2F4] command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

GroupTheory

GroupTheory[ExceptionalGroup]

GroupTheory[IsSimple]

GroupTheory[Ree2G2]

GroupTheory[Suzuki2B2]

GroupTheory[TitsGroup]