Ree2G2 - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

Ree2G2

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Ree2G2( q )

Parameters

q

-

{posint,algebraic}; an odd power of 2, or an expression

Description

• 

The Ree groups G22q , for an odd power q of 3, are a series of (typically) simple groups of Lie type, first constructed by R. Ree. They are defined only for q=32e+1 an odd power of 3 (where, here, 0e).

• 

The Ree2G2( q ) command constructs a permutation group isomorphic to G22q , for q equal to either 3 or 27.

• 

If the argument q is not numeric, or if it is an odd power of 3 greater than 27, then a symbolic group representing G22q is returned.

• 

The Ree group G223 is not simple, but mRee( q ) is simple for admissible values of 3<q. The derived subgroup of G223 is simple, isomorphic to the group PSL2&comma;8 .

Examples

withGroupTheory&colon;

GRee2G23

GG223

(1)

GroupOrderG

1512

(2)

IsSimpleG

false

(3)

LDerivedSubgroupG

LG223&comma;G223

(4)

IsSimpleL

true

(5)

ClassifyFiniteSimpleGroupL

CFSG: Chevalley Group A18&equals;PSL2&comma;8

(6)

GRee2G227

GG2227

(7)

IsSimpleG

true

(8)

useGraphTheoryinDrawGraphGruenbergKegelGraphGend use

Currently, the group G22243 (and those for larger odd powers of 3) are available only as symbolic groups.

GRee2G2243

GG22243

(9)

GeneratorsG

Error, (in GroupTheory:-Generators) cannot compute the generators of a symbolic group

Nevertheless, Maple has some knowledge of this group.

GroupOrderG

49825657439340552

(10)

IsSimpleG

true

(11)

MinPermRepDegreeG

14348908

(12)

Likewise, for non-numeric values of the argument q, a symbolic group is returned.

IsSimpleRee2G2q

falseq=3trueotherwise

(13)

ClassNumberRee2G2q

q+8

(14)

Compatibility

• 

The GroupTheory[Ree2G2] command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

GroupTheory

GroupTheory[ExceptionalGroup]

GroupTheory[IsSimple]

GroupTheory[Ree2F4]

GroupTheory[Suzuki2B2]