GroupTheory
Steinberg2E6
Calling Sequence
Parameters
Description
Examples
Compatibility
Steinberg2E6( q )
q
-
algebraic; an algebraic expression, taken to be a prime power
The Steinberg group E62⁡q , for a prime power q, is a simple group of Lie type.
The Steinberg2E6( q ) command returns a symbolic group representing the Steinberg group E62⁡q .
with⁡GroupTheory:
G≔Steinberg2E6⁡2
G≔E62⁡2
type⁡G,Group
true
type⁡G,PermutationGroup
false
GroupOrder⁡G
76532479683774853939200
MinPermRepDegree⁡G
3968055
IsSimple⁡G
IsSimple⁡Steinberg2E6⁡4096
GroupOrder⁡Steinberg2E6⁡27
4423616655215750021498369285918192558448382923930662108203473523560591980763988390542885164349041907752671641600
ClassNumber⁡Steinberg2E6⁡32
1109537246
G≔Steinberg2E6⁡q
G≔E62⁡q
ClassNumber⁡G
q6+q5+2⁢q4+4⁢q3+11⁢q2+11⁢q+16irem⁡q,6=112⁢q2+14⁢q+30irem⁡q,6=211⁢q2+11⁢q+15irem⁡q,6=310⁢q2+10⁢q+14irem⁡q,6=413⁢q2+15⁢q+34irem⁡q,6=5
The GroupTheory[Steinberg2E6] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
See Also
GroupTheory[ClassNumber]
GroupTheory[ExceptionalGroup]
GroupTheory[GroupOrder]
GroupTheory[IsSimple]
GroupTheory[MinPermRepDegree]
GroupTheory[Steinberg3D4]
Download Help Document