Steinberg2E6 - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

Steinberg2E6

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Steinberg2E6( q )

Parameters

q

-

algebraic; an algebraic expression, taken to be a prime power

Description

• 

The Steinberg group E62q , for a prime power q, is a simple group of Lie type.

• 

The Steinberg2E6( q ) command returns a symbolic group representing the Steinberg group E62q .

Examples

withGroupTheory:

GSteinberg2E62

GE622

(1)

typeG,Group

true

(2)

typeG,PermutationGroup

false

(3)

GroupOrderG

76532479683774853939200

(4)

MinPermRepDegreeG

3968055

(5)

IsSimpleG

true

(6)

IsSimpleSteinberg2E64096

true

(7)

GroupOrderSteinberg2E627

4423616655215750021498369285918192558448382923930662108203473523560591980763988390542885164349041907752671641600

(8)

ClassNumberSteinberg2E632

1109537246

(9)

GSteinberg2E6q

GE62q

(10)

ClassNumberG

q6+q5+2q4+4q3+11q2+11q+16iremq,6=112q2+14q+30iremq,6=211q2+11q+15iremq,6=310q2+10q+14iremq,6=413q2+15q+34iremq,6=5

(11)

IsSimpleG

true

(12)

Compatibility

• 

The GroupTheory[Steinberg2E6] command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

GroupTheory[ClassNumber]

GroupTheory[ExceptionalGroup]

GroupTheory[GroupOrder]

GroupTheory[IsSimple]

GroupTheory[MinPermRepDegree]

GroupTheory[Steinberg3D4]