Suzuki2B2 - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

Suzuki2B2

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Suzuki2B2( q )

Parameters

q

-

: {posint,algebraic} : an odd power of 2, or an expression

Description

• 

The Suzuki groups Szq , of type ²B₂q, for an odd power q of 2, are a series of (typically) simple groups of Lie type, first constructed by M. Suzuki. They are defined only for q=22e+1 an odd power of 2 (where, here, 0e).

• 

The groups Szq should not be confused with the "Suzuki group" of order 448345497600, one of the sporadic finite simple groups. (See GroupTheory[SuzukiGroup].)

• 

The Suzuki groups Szq are notable among the finite simple groups in that they are the only finite non-abelian simple groups whose order is not divisible by 3.

• 

The Suzuki2B2( q ) command constructs a permutation group isomorphic to Szq , for admissible values of q up to 512.

• 

If the argument q is not numeric, or if it is an odd power of 2 greater than 512, then a symbolic group representing Szq is returned.

  

(The Suzuki groups Sz8 and Sz32 are also available by using the ExceptionalGroup command.)

Examples

withGroupTheory:

The smallest of the Suzuki groups is a non-simple group of order 20 that is, in fact, a soluble Frobenius group.

GSuzuki2B22

GSz2

(1)

GroupOrderG

20

(2)

IsSimpleG

false

(3)

IsSolubleandIsFrobeniusGroupG

true

(4)

csCompositionSeriesG

csSz21,5,3,2,4,2,34,5Sz2,Sz2

(5)

seqGroupOrderS,S=cs

20,10,5,1

(6)

useplots,GraphTheoryindisplayArrayDrawGraphCayleyGraphG,DrawSubgroupLatticeG,'labels'='ids'end use

For values of q larger than 2, the group Szq is simple.

GSuzuki2B232

GSz32

(7)

GroupOrderG

32537600

(8)

IsSimpleG

true

(9)

IsCNGroupG

true

(10)

OrderClassPolynomialG,x

7936000x41+15744000x31+6507520x25+1301504x5+1016800x4+31775x2+x

(11)

DisplayCharacterTableSuzuki2B28

C

1a

2a

4a

4b

5a

7a

7b

7c

13a

13b

13c

|C|

1

455

1820

1820

5824

4160

4160

4160

2240

2240

2240

 

 

 

 

 

 

 

 

 

 

 

 

χ__1

1

1

1

1

1

1

1

1

1

1

1

χ__2

14

−2

2I

2I

−1

0

0

0

1

1

1

χ__3

14

−2

2I

2I

−1

0

0

0

1

1

1

χ__4

35

3

−1

−1

0

0

0

0

−1213−11013+−1313+−11113

−1413−1613+−1713+−1913

−1813−11213+−1113+−1513

χ__5

35

3

−1

−1

0

0

0

0

−1813−11213+−1113+−1513

−1213−11013+−1313+−11113

−1413−1613+−1713+−1913

χ__6

35

3

−1

−1

0

0

0

0

−1413−1613+−1713+−1913

−1813−11213+−1113+−1513

−1213−11013+−1313+−11113

χ__7

64

0

0

0

−1

1

1

1

−1

−1

−1

χ__8

65

1

1

1

0

−127−157

−147−137

−167−117

0

0

0

χ__9

65

1

1

1

0

−167−117

−127−157

−147−137

0

0

0

χ__10

65

1

1

1

0

−147−137

−167−117

−127−157

0

0

0

χ__11

91

−5

−1

−1

1

0

0

0

0

0

0

For non-numeric arguments, a symbolic group is returned.

GSuzuki2B2q

GSzq

(12)

GroupOrderG

q2q2+1q1

(13)

IsSimpleGassuming2<q

true

(14)

IsCNGroupG

true

(15)

A symbolic group is also returned if the numeric argument q exceeds 512.

GSuzuki2B22101

GSz2535301200456458802993406410752

(16)

ifactorGroupOrderG

2202580994910600935218735279937600503817460697534250373638732486577432339208719341117531003194129

(17)

MinimumPermutationRepresentationDegreeG

6427752177035961102167848369364650410088811975131171341205505

(18)

IsSimpleG

true

(19)

Compatibility

• 

The GroupTheory[Suzuki2B2] command was introduced in Maple 2020.

• 

For more information on Maple 2020 changes, see Updates in Maple 2020.

See Also

GroupTheory

GroupTheory[ExceptionalGroup]

GroupTheory[GroupOrder]

GroupTheory[IsCNGroup]

GroupTheory[IsFrobenius]

GroupTheory[IsSimple]

GroupTheory[SuzukiGroup]