GroupTheory
Suzuki2B2
Calling Sequence
Parameters
Description
Examples
Compatibility
Suzuki2B2( q )
q
-
: {posint,algebraic} : an odd power of 2, or an expression
The Suzuki groups Sz⁡q , of type ²B₂⁡q, for an odd power q of 2, are a series of (typically) simple groups of Lie type, first constructed by M. Suzuki. They are defined only for q=22⁢e+1 an odd power of 2 (where, here, 0≤e).
The groups Sz⁡q should not be confused with the "Suzuki group" of order 448345497600, one of the sporadic finite simple groups. (See GroupTheory[SuzukiGroup].)
The Suzuki groups Sz⁡q are notable among the finite simple groups in that they are the only finite non-abelian simple groups whose order is not divisible by 3.
The Suzuki2B2( q ) command constructs a permutation group isomorphic to Sz⁡q , for admissible values of q up to 512.
If the argument q is not numeric, or if it is an odd power of 2 greater than 512, then a symbolic group representing Sz⁡q is returned.
(The Suzuki groups Sz⁡8 and Sz⁡32 are also available by using the ExceptionalGroup command.)
with⁡GroupTheory:
The smallest of the Suzuki groups is a non-simple group of order 20 that is, in fact, a soluble Frobenius group.
G≔Suzuki2B2⁡2
G≔Sz2
GroupOrder⁡G
20
IsSimple⁡G
false
IsSolubleandIsFrobeniusGroup⁡G
true
cs≔CompositionSeries⁡G
cs≔Sz2▹1,5,3,2,4,2,34,5▹Sz2,Sz2▹
seq⁡GroupOrder⁡S,S=cs
20,10,5,1
useplots,GraphTheoryindisplay⁡Array⁡DrawGraph⁡CayleyGraph⁡G,DrawSubgroupLattice⁡G,'labels'='ids'end use
For values of q larger than 2, the group Sz⁡q is simple.
G≔Suzuki2B2⁡32
G≔Sz32
32537600
IsCNGroup⁡G
OrderClassPolynomial⁡G,x
7936000⁢x41+15744000⁢x31+6507520⁢x25+1301504⁢x5+1016800⁢x4+31775⁢x2+x
Display⁡CharacterTable⁡Suzuki2B2⁡8
C
1a
2a
4a
4b
5a
7a
7b
7c
13a
13b
13c
|C|
1
455
1820
5824
4160
2240
χ__1
χ__2
14
−2
2⁢I
−2⁢I
−1
0
χ__3
χ__4
35
3
−−1213−−11013+−1313+−11113
−−1413−−1613+−1713+−1913
−−1813−−11213+−1113+−1513
χ__5
χ__6
χ__7
64
χ__8
65
−127−−157
−147−−137
−167−−117
χ__9
χ__10
χ__11
91
−5
For non-numeric arguments, a symbolic group is returned.
G≔Suzuki2B2⁡q
G≔Szq
q2⁢q2+1⁢q−1
IsSimple⁡Gassuming2<q
A symbolic group is also returned if the numeric argument q exceeds 512.
G≔Suzuki2B2⁡2101
G≔Sz2535301200456458802993406410752
ifactor⁡GroupOrder⁡G
2202⁢5⁢809⁢9491060093⁢5218735279937⁢600503817460697⁢53425037363873248657⁢7432339208719⁢341117531003194129
MinimumPermutationRepresentationDegree⁡G
6427752177035961102167848369364650410088811975131171341205505
The GroupTheory[Suzuki2B2] command was introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
GroupTheory[ExceptionalGroup]
GroupTheory[GroupOrder]
GroupTheory[IsCNGroup]
GroupTheory[IsFrobenius]
GroupTheory[IsSimple]
GroupTheory[SuzukiGroup]
Download Help Document