SylowBasis - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

SylowBasis

  

construct a Sylow basis for a finite soluble group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

SylowBasis( G )

Parameters

G

-

a soluble permutation group

Description

• 

Let G be a finite soluble group.  A Sylow basis for G is a collection B of Sylow subgroups of G, one for each prime divisor of the order of G, such that PQ=QP, for each pair P,Q of Sylow subgroups in B.

• 

The existence of a Sylow basis for G is equivalent to the solubility of G.

• 

The SylowBasis( G ) command constructs a Sylow basis for the soluble group G. If the group G is not soluble, then an exception is raised. The group G must be an instance of a permutation group.

Examples

withGroupTheory:

GAlt4

GA4

(1)

BSylowBasisG

B1,23,4,1,32,4,1,3,2

(2)

mapGroupOrder,B

4,3

(3)

evalbFrobeniusProductB1,B2,G=FrobeniusProductB2,B1,G

true

(4)

GDihedralGroup30

GD30

(5)

BSylowBasisG

B1,19,7,25,132,20,8,26,143,21,9,27,154,22,10,28,165,23,11,29,176,24,12,30,18,1,21,112,22,123,23,134,24,145,25,156,26,167,27,178,28,189,29,1910,30,20,1,172,163,154,145,136,127,118,1018,3019,2920,2821,2722,2623,25,1,23,304,295,286,277,268,259,2410,2311,2212,2113,2014,1915,1816,17

(6)

mapGroupOrder,B

5,3,4

(7)

andseqFrobeniusProductS1,S2,G=FrobeniusProductS2,S1,G,S=combinat:-chooseB,2

true

(8)

GFrobeniusGroup300,3

G2,3,64,40,575,86,127,54,778,93,279,63,6610,96,1711,23,5913,38,3914,49,7015,91,2016,34,7918,52,6219,43,6821,61,4822,87,5624,95,4125,75,7426,30,7228,47,5329,94,7631,99,6432,85,8933,97,6535,100,5036,90,8137,73,5842,92,6944,98,5545,82,8446,83,7851,88,6760,80,71,1,23,64,75,89,1410,1511,1612,1713,1819,2620,2721,2822,2923,3024,3125,3233,4234,4335,4436,4537,4638,4739,4840,4941,5051,6052,6153,6254,6355,6456,6557,6658,6759,6869,7670,7771,7872,7973,8074,8175,8283,8884,8985,9086,9187,9293,9694,9795,9899,100,1,32,64,95,107,148,1511,1912,2013,2116,2617,2718,2822,3323,3424,3525,3629,4230,4331,4432,4537,5138,5239,5340,5441,5546,6047,6148,6249,6350,6456,6957,7058,7159,7265,7666,7767,7868,7973,8374,8475,8580,8881,8982,9086,9387,9491,9692,9795,9998,100,1,4,11,22,372,7,16,29,463,9,19,33,515,12,23,38,566,14,26,42,608,17,30,47,6510,20,34,52,6913,24,39,57,7315,27,43,61,7618,31,48,66,8021,35,53,70,8325,40,58,74,8628,44,62,77,8832,49,67,81,9136,54,71,84,9341,59,75,87,9545,63,78,89,9650,68,82,92,9855,72,85,94,9964,79,90,97,100,1,5,13,25,412,8,18,32,503,10,21,36,554,12,24,40,596,15,28,45,647,17,31,49,689,20,35,54,7211,23,39,58,7514,27,44,63,7916,30,48,67,8219,34,53,71,8522,38,57,74,8726,43,62,78,9029,47,66,81,9233,52,70,84,9437,56,73,86,9542,61,77,89,9746,65,80,91,9851,69,83,93,9960,76,88,96,100

(9)

BSylowBasisG:

mapGroupOrder,B

25,4,3

(10)

andseqFrobeniusProductS1,S2,G=FrobeniusProductS2,S1,G,S=combinat:-chooseB,2

true

(11)

SylowBasisPSL4,3

Error, (in GroupTheory:-SylowBasis) group must be soluble

SylowBasisSymm5

Error, (in GroupTheory:-SylowBasis) group must be soluble

Compatibility

• 

The GroupTheory[SylowBasis] command was introduced in Maple 2019.

• 

For more information on Maple 2019 changes, see Updates in Maple 2019.

See Also

combinat[choose]

GroupTheory

GroupTheory[AlternatingGroup]

GroupTheory[DihedralGroup]

GroupTheory[FrobeniusGroup]

GroupTheory[FrobeniusProduct]

GroupTheory[IsSoluble]

GroupTheory[PSL]

GroupTheory[SylowSubgroup]

GroupTheory[SymmetricGroup]