SylowSubgroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

SylowSubgroup

  

construct a Sylow subgroup of a group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

SylowSubgroup( p, G )

Parameters

p

-

a positive rational prime

G

-

a permutation group or Cayley table group

Description

• 

Let G be a finite group, and let p be a positive (rational) prime.  A Sylow p-subgroup of G is a maximal p-subgroup of G where, by a p-subgroup, we mean a subgroup whose order is a power of p. The Sylow theorems assert that, for a prime divisor p of the order of a finite group G, there is a Sylow p-subgroup of G and that all Sylow p-subgroups of G are conjugate in G.  Moreover, the number of Sylow p-subgroups of G is congruent to 1 modulo p.

• 

The SylowSubgroup( p, G ) command constructs a Sylow p-subgroup of a group G. The group G must be an instance of a permutation group or a Cayley table group.

• 

Note that, if p is not a divisor of the order of G, then the trivial subgroup of G is returned.

Examples

withGroupTheory:

GSL2,5:

ifactorGroupOrderG

2335

(1)

P2SylowSubgroup2,G

P21,2,3,45,20,15,106,22,18,147,23,19,118,24,16,129,21,17,13,1,5,3,152,10,4,206,8,18,167,13,19,219,23,17,1112,14,24,22

(2)

GroupOrderP2

8

(3)

GroupOrderSylowSubgroup3,G

3

(4)

GroupOrderSylowSubgroup5,G

5

(5)

GroupOrderSylowSubgroup7,G

1

(6)

GCayleyTableGroupSymm4

G < a Cayley table group with 24 elements >

(7)

PSylowSubgroup3&comma;G

P < a Cayley table group with 3 elements >

(8)

NNormaliserP&comma;G

NN < a Cayley table group with 24 elements > < a Cayley table group with 3 elements >

(9)

QSylowSubgroup2&comma;N

Q < a Cayley table group with 2 elements >

(10)

GroupOrderQ

2

(11)

Compatibility

• 

The GroupTheory[SylowSubgroup] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory

GroupTheory[AlternatingGroup]