Air Orifice ISO6358
Orifice of Air based on the standard ISO6358 which is for compressible flow
Description
Equations
Variables
Connections
Parameters
See Also
The Air Orifice ISO6358 component models an orifice with flow-rate characteristics defined in standard ISO6358. This component calculates mainly pressure difference and mass flow rate.
In the ISO6358, the following equation is defined to calculate mass flow rate mflow.
mflow=p__a⋅C⋅ρ__0⋅T__0T__a⋅1−p__bp__a−b__cr1−b__cr2p__bp__a>b__crp__a⋅C⋅ρ__0⋅T__0T__aotherwise
Where mflow : mass flow rate [kg/s], p__a : upstream pressure [Pa], C : Sonic conductance [m3/s/Pa], ρ__0 : density of air at reference condition [kg/m3], T__0 : temperature of air at reference condition [K], T__a : upstream temperature [K], p__b : downstream pressure [Pa], and b__cr : critical pressure ratio [-].
The equation is modified for this component based on the reference book[1], and in order to have bi-directional flow.
mflow=p__a⋅C__act⋅ρ__0⋅T__0T__ap__bp__a<b__cr_actp__a⋅C__act⋅ρ__0⋅T__0T__a⋅1−p__bp__a−b__cr_act1−b__cr_act2p__bp__a<b__lamk__ab⋅p__a⋅(1−p__bp__a)⋅T__0T__ap__bp__a<1−k__ab⋅p__b⋅(1−p__ap__b)⋅T__0T__bp__bp__a<b__lam−1−p__b⋅C__act⋅ρ__0⋅T__0T__b⋅1−p__ap__b−b__cr_act1−b__cr_act2p__bp__a<b__cr_act−1−p__b⋅C__act⋅ρ__0⋅T__0T__botherwise
And,
k__ab=1000 ⋅C__act⋅ρ__0⋅1−0.999−b__cr_act1−b__cr_act2
Where mflow : mass flow rate [kg/s], p__a : upstream pressure [Pa], C__act : Sonic conductance [m3/s/Pa], ρ__0 : density of air at reference condition [kg/m3], T__0 : temperature of air at reference condition [K], T__a : upstream temperature [K], p__b : downstream pressure [Pa], T__b : downstream temperature [K], b__cr_act : critical pressure ratio [-], and b__lam : pressure ratio at the boundary of laminar/turbulent [-]
(*) the above equation is used for both Dynamics of mass = Dynamic and Static.
Based on the parameter type, Sonic conductance C__act and Critical pressure ratio b__cr_act are obtained as follow.
Parameter Type = Sonic conductance
Sonic conductance
C__act= C
Critical pressure ratio
b__cr_act=b__cr
Parameter Type = Effective area
C__act= S5
b__cr_act=0.5
Parameter Type = Flow area of restriction
C__act= 0.512⋅A__rPi
Definitions related to Mass flow rate and pressure:
dp=`port_a.p`−`port_b.p`
pratio=`port_b.p``port_a.p`
v=mflow{inStream`port_a.rho`dp≥0inStream`port_b.rho`others⋅A__act
`port_a.mflow`=mflow
`port_b.mflow`=−mflow
Specific enthalpy is defined with:
`port_a.hflow`=inStream`port_b.hflow`
`port_b.hflow`=inStream`port_a.hflow`
If Fidelity of properties = Constant, density is calculated with:
ρ__0=p__0`HeatTransfer.Properties.Fluid.SimpleAir.R_gas`⋅T__0
(*) Regarding the value of properties for Constant, see more in Air Settings.
If Fidelity of properties = Ideal Gas (NASA Polynomial), Density is calculated with:
ρ__0=p__0`HeatTransfer.Properties.Fluid.NASAPolyAir.R_gas⋅T__0
(*) The properties are defined with NASA polynomials and coefficients, see more in Air Settings.
Port's variables are defined with:
`port_a.rho`=inStream`port_b.rho`
`port_b.rho`=inStream`port_a.rho`
`port_a.T`=inStream`port_b.T`
`port_b.T`=inStream`port_a.T`
References
[1] : Peter Beater (2006), "Pneumatic Drives - System Design, Modeling and Control", Springer
Symbol
Units
Modelica ID
dp
Pa
Pressure difference
pratio
−
Pressure ratio
mflow
kgs
Mass flow rate
v
ms
Velocity of flow
C__act
m3s⋅Pa
Actual Sonic conductance
C_act
b__cr_act
Actual critical pressure ratio
b_cr_act
k__ab
Linear gain for Laminar flow
k_ab
ρ__0
kgm3
Density of air at reference condition
rho0
Name
Condition
port__a
Air Port
port_a
port__b
port_b
Default
Airsimulationsettings
AirSettings1
Specify a component of Air simulation settings
Settings
Parameter Type
General
Select parameter type
- Sonic conductance
- Effective area
- Flow area of restriction
TypeOfParam
A
0.052⋅Pi
m2
Flow area, only for monitoring flow velocity
C
1e−7
A__r
1e−5
Flow area of the local restriction
Ar
b__cr
0.5
b_cr
S
5e−7
Effective area
b__lam
0.999
Pressure ratio at the boundary of laminar/turbulent [-]
b_lam
p__0
100000
Reference pressure
p0
T__0
293.15
K
Reference temperature
T0
Heat Transfer Library Overview
Air Overview
Air Basic Overview
Download Help Document