Water Tee - MapleSim Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Water Tee

Tee junction for incompressible flow

  

 

Description

Equations

Variables

Connections

Parameters

See Also

Description

The Water Tee component models a tee junction for incompressible flow, and has multiple methods to calculate a local resistance for each path, incl. Idelchik[1], Rennels[2], and Blevins[3]. In addition, the calculation of these local resistances can be specified as use of simulated (Time-variant) flow rates or based on specified flow rate at design point (Time-invariant). This component calculates mainly pressure difference and mass flow rate.

 

Important note : This component supports only "Dynamics of mass = Dynamic".

Equations

Basic concept

The following diagram shows the relationship between parameters and the geometry. Noted that port_a and port_b are the same diameter.  

This component consists of three flow calculation components and an internal control volume at the junction. The local resistances are calculated based on the direction of flows, that are determined with pressure difference between the junction (control volume) and ports.

Regarding the equations of Control volume, you can find more information in the Water Volume help page. The each flow component calculate the mass flow rate with the following equation:

 mflow=αA{inStream`port_a.rho`dp0inStream`port_b.rho`othersdp

A is cross section area, α is total flow coefficient. The total flow coefficient is calculated with:

α=α__friction+α__local=2D__hλL+2ζ

D__h is diameter of the section, L is the length of the section, and λ is Friction coefficient. ζ is the local resistance coefficient.

 

Friction coefficient calculation

The following table shows the coverage of flow directions for each method.

 

Note :  dp[1] means the pressure difference between port_a and junction. dp[2] is for between port_b and junction. dp[3] is also for port_c and junction.

Type of flow

Condition

(pressure difference)

Availability

Comment

Converging 1 : port_a and port_c to port_b

port_a - junction node

dp1>0

 

port_b - junction node

dp2<0

 

port_c - junction node

dp3&gt;0

Idelchik : available

Rennels : available

Blevins : available

 

Converging 2: port_b and port_c to port_a

port_a - junction node

dp1<0

 

port_b - junction node

dp2&gt;0

 

port_c - junction node

dp3&gt;0

Idelchik : available

Rennels : available

Blevins : available

 

Converging 2: port_a and port_b to port_c

port_a - junction node

dp1&gt;0

 

port_b - junction node

dp2&gt;0

 

port_c - junction node

dp3<0

Idelchik :  ---

Rennels : available

Blevins : available

For Idelchik, parameter zeta__con_in is used.

Diverging 1: port_a to port_b and port_c

port_a - junction node

dp1&gt;0

 

port_b - junction node

dp2<0

 

port_c - junction node

dp3<0

Idelchik : available

Rennels : available

Blevins : available

 

Diverging 2: port_b to port_a and port_c

port_a - junction node

dp1<0

 

port_b - junction node

dp2&gt;0

 

port_c - junction node

dp3<0

Idelchik : available

Rennels : available

Blevins : available

 

Diverging 3: port_c to port_a and port_b

port_a - junction node

dp1<0

 

port_b - junction node

dp2<0

 

port_c - junction node

dp3&gt;0

Idelchik : ---

Rennels : available

Blevins : available

For Idelchik, parameter zeta__div_ex is used.

 

Constant zeta

This is applied when the parameter setting is Tee calculation = Constant zeta.

 

The local resistance ζ is defined by a parameter &zeta;__constant.

&zeta;1&equals;&zeta;__constant1

ζ2&equals;&zeta;__constant2

ζ3&equals;&zeta;__constant3

Note : [1] port_a, [2] port_b, [3] port_c (branch)

 

Idelchik's method

This is applied when the parameter setting is Tee calculation = Idelchik with design point, or Idelchik with actual flow ratio.

 

The following equations are defined in Idelchik's method for each case. The calculation uses Volume flow rate vflow.

Note : [1] port_a, [2] port_b, [3] port_c (branch)

 

If Tee calculation = Idelchik with design point, these volume flow rates are specified by parameter values,

vflow1&equals;vflow__dp1

vflow2&equals;vflow__dp2

vflow3&equals;vflow__dp3

And, if Idelchik with actual flow ratio, the actual calculated volume flow rates are used for vflow.  

 

Converging 1 : port_a and port_c to port_b

&zeta;1&equals;1.55vflow3vflow2vflow3vflow221vflow3vflow22

ζ2&equals;0

ζ3&equals;&lpar;&lcub;1.0A__sA__m0.35&lcub;0.91vflow3vflow2vflow3vflow20.40.55otherwiseotherwise&rpar;1&plus;vflow3vflow2A__mA__s21vflow3vflow22vflow3vflow2A__mA__s2

 

Converging 1 : port_b and port_c to port_a

&zeta;1&equals;0

ζ2&equals;1.55vflow3vflow1vflow3vflow121vflow3vflow12

ζ3&equals;&lpar;&lcub;1.0A__sA__m0.35&lcub;0.91vflow3vflow1vflow3vflow10.40.55otherwiseotherwise&rpar;1&plus;vflow3vflow1A__mA__s21vflow3vflow12vflow3vflow1A__mA__s2

 

Converging 3 : port_a and port_b to port_c

&zeta;1&equals;zeta__con_in

ζ2&equals;zeta__con_in

ζ3&equals;0

 

Diverging 1 : port_a to port_b to port_c

&zeta;1&equals;0

ζ2&equals;vflow3vflow12&lpar;&lcub;0.4A__sA__m0.4&lcub;22vflow3vflow11vflow3vflow10.50.32vflow3vflow11otherwiseotherwise&rpar;1vflow3vflow12

ζ3&equals;1&plus;0.3vflow3vflow1A__mA__s2vflow3vflow1A__mA__s2

 

Diverging 2 : port_b to port_a to port_c

&zeta;1&equals;vflow3vflow22&lpar;&lcub;0.4A__sA__m0.4&lcub;22vflow3vflow21vflow3vflow20.50.32vflow3vflow21otherwiseotherwise&rpar;1vflow3vflow22

ζ2&equals;0

ζ3&equals;1&plus;0.3vflow3vflow2A__mA__s2vflow3vflow2A__mA__s2

Diverging 3 : port_c to port_a to port_b

&zeta;1&equals;&zeta;__div_ex

ζ2&equals;&zeta;__div_ex

ζ3&equals;0

Other : pressure difference ports and junction are close to zero [Pa] (dpdp__small2)

&zeta;1&equals;&zeta;__0

ζ2&equals;&zeta;__0

ζ3&equals;&zeta;__0

 

Rennels' method

This is applied when the parameter setting is Tee calculation = Rennels with design point, or Rennels with actual flow ratio.

 

The following equations are defined in Idelchik's method for each case. The calculation uses Mass flow rate mflow.

Note : [1] port_a, [2] port_b, [3] port_c (branch)

 

If Tee calculation = Rennels with design point, these mass flow rates are specified by parameter values

mflow1&equals;mflow__dp1

mflow2&equals;mflow__dp2

mflow3&equals;mflow__dp3

And, if Rennels with actual flow ratio, the actual calculated mass flow rates are used for mflow.  

 

Converging 1 : port_a and port_c to port_b

&zeta;1&equals;0.541.12rD__side&plus;0.28rD__sidemflow1mflow22&plus;0.38&plus;0.42rD__side&plus;0.56rD__sidemflow1mflow210.88&plus;0.7rD__side0.84rD__side

ζ2&equals;0

ζ3&equals;1.92&plus;1.4rD__side0.84rD__side&plus;3.462.7rD__side&plus;1.12rD__sidemflow3mflow21&plus;0.92&plus;0.2rD__side&plus;0.07rD__sidemflow3mflow22D__sideD__main4&plus;1.00.5D__sideD__main1&plus;D__side&sol;D__main

 

Converging 1 : port_b and port_c to port_a

&zeta;1&equals;0

ζ2&equals;0.541.12rD__side&plus;0.28rD__sidemflow2mflow12&plus;0.38&plus;0.42rD__side&plus;0.56rD__sidemflow2mflow110.88&plus;0.7rD__side0.84rD__side

ζ3&equals;1.92&plus;1.4rD__side0.84rD__side&plus;3.462.7rD__side&plus;1.12rD__sidemflow3mflow11&plus;0.92&plus;0.2rD__side&plus;0.07rD__sidemflow3mflow12D__sideD__main4&plus;1.00.5D__sideD__main1&plus;D__side&sol;D__main

 

Converging 3 : port_a and port_b to port_c

&zeta;1&equals;0.811.16rD__side&plus;0.5rD__sidemflow1mflow320.951.65rD__sidemflow1mflow31&plus;1.341.69rD__side

ζ2&equals;0.811.16rD__side&plus;0.5rD__sidemflow2mflow320.951.65rD__sidemflow2mflow31&plus;1.341.69rD__side

ζ3&equals;0

 

Diverging 1 : port_a to port_b to port_c

&zeta;1&equals;0

ζ2&equals;0.620.98mflow2mflow11&plus;0.36mflow2mflow12&plus;0.04mflow2mflow16

ζ3&equals;0.811.130.16rD__sidemflow3mflow11&plus;1.000.24rD__sidemflow3mflow12D__sideD__main4&plus;1.08D__sideD__main1.06D__sideD__main3&plus;zeta__entrance

zeta__entrance&equals;0.571.07rD__side2.13rD__side&plus;8.24rD__side3&sol;28.48rD__side2&plus;2.90rD__side5&sol;2

 

Diverging 2 : port_b to port_a to port_c

&zeta;1&equals;0.620.98mflow1mflow21&plus;0.36mflow1mflow22&plus;0.04mflow1mflow26

ζ2&equals;0

ζ3&equals;0.811.130.16rD__sidemflow3mflow21&plus;1.000.24rD__sidemflow3mflow22D__sideD__main4&plus;1.08D__sideD__main1.06D__sideD__main3&plus;&zeta;__entrance

&zeta;__entrance&equals;0.571.07rD__side2.13rD__side&plus;8.24rD__side3&sol;28.48rD__side2&plus;2.90rD__side5&sol;2

Diverging 3 : port_c to port_a to port_b

&zeta;1&equals;0.59mflow1mflow32&plus;1.181.84rD__side&plus;1.16rD__sidemflow1mflow310.68&plus;1.04rD__side1.16rD__side

ζ2&equals;0.59mflow2mflow32&plus;1.181.84rD__side&plus;1.16rD__sidemflow2mflow310.68&plus;1.04rD__side1.16rD__side

ζ3&equals;0

Other : pressure difference ports and junction are close to zero [Pa] (dpdp__small2)

&zeta;1&equals;&zeta;__0

ζ2&equals;&zeta;__0

ζ3&equals;&zeta;__0

 

Blevins' method

This is applied when the parameter setting is Tee calculation = Blevins with design point, or Blevins with actual flow ratio.

 

The following equations are defined in Idelchik's method for each case. The calculation uses flow velocity v.

Note : [1] port_a, [2] port_b, [3] port_c (branch)

 

If Tee calculation = Blevins with design point, these flow velocities are specified by parameter values

v1&equals;v__dp1

v2&equals;v__dp2

v3&equals;v__dp3

And, if Blevins with actual flow ratio, the actual calculated flow velocity are used for v.  

 

Converging 1 : port_a and port_c to port_b

&zeta;1&equals;0.045&plus;1.381.94rD__side&plus;1.34rD__sidev3v20.900.95rD__side&plus;1.23rD__sidev3v221v3v2A__sideA__main2

ζ2&equals;0

ζ3&equals;1.090.8rD__side0.53&plus;1.27rD__side1.86rD__sidev1v21.482.28rD__side&plus;1.80rD__sidev1v22v3v2

 

Converging 1 : port_b and port_c to port_a

&zeta;1&equals;0

ζ2&equals;0.045&plus;1.381.94rD__side&plus;1.34rD__sidev3v10.900.95rD__side&plus;1.23rD__sidev3v121v3v1A__sideA__main2

ζ3&equals;1.090.8rD__side0.53&plus;1.27rD__side1.86rD__sidev2v11.482.28rD__side&plus;1.80rD__sidev2v12v3v1

 

Converging 3 : port_a and port_b to port_c

&zeta;1&equals;1.191.16rD__side&plus;0.46rD__side1.731.0rD__sidev1v3&plus;1.341.69rD__sidev1v32v1v32

ζ2&equals;1.191.16rD__side&plus;0.46rD__side1.731.0rD__sidev2v3&plus;1.341.69rD__sidev2v32v2v32

ζ3&equals;0

 

Diverging 1 : port_a to port_b to port_c

&zeta;1&equals;0

ζ2&equals;&lpar;&lcub;1.550.22v3v120.03v3v1<0.220.65v3v10.2220.03otherwise&rpar;11v3v12

ζ3&equals;0.990.23rD__side0.82&plus;0.29rD__side&plus;0.3rD__sidev3v1&plus;1.020.64rD__side&plus;0.76rD__sidev3v12v3v12

 

Diverging 2 : port_b to port_a to port_c

&zeta;1&equals;&lpar;&lcub;1.550.22v3v220.03v3v2<0.220.65v3v20.2220.03otherwise&rpar;11v3v22

ζ2&equals;0

ζ3&equals;0.990.23rD__side0.82&plus;0.29rD__side&plus;0.3rD__sidev3v2&plus;1.020.64rD__side&plus;0.76rD__sidev3v22v3v22

Diverging 3 : port_c to port_a to port_b

&zeta;1&equals;0.59&plus;1.181.84rD__side&plus;1.16rD__sidev1v30.681.04rD__side&plus;1.16rD__sidev1v32v1v32

ζ2&equals;0.59&plus;1.181.84rD__side&plus;1.16rD__sidev2v30.681.04rD__side&plus;1.16rD__sidev2v32v2v32

ζ3&equals;0

Other : pressure difference ports and junction are close to zero [Pa] (dpdp__small2)

&zeta;1&equals;&zeta;__0

ζ2&equals;&zeta;__0

ζ3&equals;&zeta;__0

 

Friction calculation

The calculation method can be specified with 3 options.

 

Friction calculation = Constant

If this option is selected, the friction coefficient &lambda; is specified by a parameter &lambda;__constant.

&lambda;&equals;&lambda;__constant

 

Friction calculation = Darcy-Weisbach with Constant velocity (Design point)

If this option is selected, the friction coefficient &lambda; is calculated with a parameter of velocity at design point v__design_f.

Re&equals;max&lcub;&rho;__adp0&rho;__bothersv__design_fD__h_act&lcub;&mu;__adp0&mu;__bothers&comma;0.1

λ&equals;`HeatTransfer.Functions.lambda_Re`Re&comma;roughness&comma;D__h_act&comma;Re__CoT&comma;IF__speed&comma;Geo__act

 

&rho;__a, &rho;__b are density at each port of flow components. &mu;__a, &mu;__b are dynamic viscosity at each port of flow components. This means, one is at port of Water Tee junction, and the another is at the junction node. D__h_act is the diameter of flow components. Re is Reynolds number. roughness is pipe roughness of flow components.

 

Friction calculation = Darcy-Weisbach

If this option is selected, the friction coefficient &lambda; is calculated with the following equations:

Re__target&equals;max&lcub;&rho;__adp0&rho;__bothersvD__h_act&lcub;&mu;__adp0&mu;__bothers&comma;0.1

&DifferentialD;Re&DifferentialD;t&equals;Re__targetReT__const

λ&equals;`HeatTransfer.Functions.lambda_Re`Re&comma;roughness&comma;D__h_act&comma;Re__CoT&comma;IF__speed&comma;Geo__act

&rho;__a, &rho;__b are density at each port of flow components. &mu;__a, &mu;__b are dynamic viscosity at each port of flow components. D__h_act is the diameter of flow components. Re is Reynolds number. roughness is pipe roughness of flow components.

 

(*) The above function `HeatTransfer.Functions.lambda_Re` is to calculated friction factor for Laminar and Turbulent flow.
The fundamental implementation is based on the following equations. Especially, the equation of Turbulent flow is Swamee and Jain's approximation[1] .

You can find more information in the Water Detailed Flow help page.

 

 

 

References

[1] : I.E. Idelchik, "Handbook of Hydraulic Resistance", 4th edition, begell house, inc.

[2] : D.C. Rennels (2022), "Pipe Flow: A Practical and Comprehensive Guide", 2nd Edition, Wiley

[3] : R.D. Blevins (1984), "Applied Fluid Dynamics Handbook", Van Nostrand Reinhold Co.

 

Variables

Symbol

Units

Description

Modelica ID

dp3

Pa

Pressure difference

[1] port_a, [2] port_b, [3] port_c

dp

mflow3

kgs

Mass flow rate

[1] port_a, [2] port_b, [3] port_c

mflow

v3

ms

Velocity of flow

[1] port_a, [2] port_b, [3] port_c

v

vflow3

m3s

Volume flow rate

[1] port_a, [2] port_b, [3] port_c

vflow

&rho;__act3

kgm3

Density

[1] port_a, [2] port_b, [3] port_c

rho_act

&mu;__act3

Pas

Dynamic viscosity

[1] port_a, [2] port_b, [3] port_c

vis_act

Re3

Reynolds number

[1] port_a, [2] port_b, [3] port_c

Re

&zeta;3

Local flow resistance

[1] port_a, [2] port_b, [3] port_c

zeta

&alpha;3

Flow coefficient (sqrt(2*Dh/lambda/L) + sqrt(2/zeta))

[1] port_a, [2] port_b, [3] port_c

alpha

&lambda;3

Friction coefficient for Darcy-Weisbach equation

[1] port_a, [2] port_b, [3] port_c

lambda

&alpha;__local3

Flow coefficient for local resistance

[1] port_a, [2] port_b, [3] port_c

alpha_local

&alpha;__friction3

Flow coefficient for Friction

[1] port_a, [2] port_b, [3] port_c

alpha_friction

vflow3vflow1

Ratio of volume flow rate port_c/port_a

vflow_ratio_a

vflow3vflow2

Ratio of volume flow rate port_c/port_b

vflow_ratio_b

mflow1mflow2

Ratio of volume flow rate port_a/port_b

mflow_ratio_a_b

mflow2mflow1

Ratio of volume flow rate port_b/port_a

mflow_ratio_b_a

mflow2mflow3

Ratio of volume flow rate port_b/port_c

mflow_ratio_b_c

mflow1mflow3

Ratio of volume flow rate port_a/port_c

mflow_ratio_a_c

mflow3mflow1

Ratio of volume flow rate port_c/port_a

mflow_ratio_c_a

mflow3mflow2

Ratio of volume flow rate port_c/port_b

mflow_ratio_c_b

v1v2

Ratio of flow velocity rate port_a/port_b

v_ratio_a_b

v2v1

Ratio of flow velocity port_b/port_a

v_ratio_b_a

v2v3

Ratio of flow velocity port_b/port_c

v_ratio_b_c

v1v3

Ratio of flow velocity port_a/port_c

v_ratio_a_c

v3v1

Ratio of flow velocity port_c/port_a

v_ratio_c_a

v3v2

Ratio of flow velocity port_c/port_b

v_ratio_c_b

Connections

Name

Units

Condition

Description

Modelica ID

port__a

 

Water Port

port_a

port__b

 

Water Port

port_b

port__c

 

Water Port

port_c

Parameters

Symbol

Default

Units

Description

Modelica ID

Watersimulationsettings 

WaterSettings1

Specify a component of Water simulation settings

Settings

Teecalculation

 

Constant zeta

Select calculation mode of Tee junction

 - Constant zeta

 - Idelchik with design point

 - Idelchik with actual flow ratio

 - Rennels with design point

 - Rennels with actual flow ratio

 - Blevins with design point

 - Blevins with actual flow ratio

modelTee

Frictioncalculation

 

Constant

Select calculation mode of friction loss

 - Constant

 - Darcy-Weisbach with Constant velocity (Design point)

 - Darcy-Weisbach

modelFriction

D__main

0.1

m

Inner diameter of pipe, Main channel

Dh_m

A__main

&pi;D__main22

m2

Cross section area, Main channel

A_m

D__side

0.1

m

Inner diameter of pipe, Side channel

Dh_s

A__side

&pi;D__side22

m2

Cross section area, Side channel

A_s

r

0.001

rad

Radius of curvature of Tee junction, up to r/Dh_s = 0.5

r

L3

0.1&comma;0.1&comma;0.1

m

Length of seach section, 1:port_a-junction 2:port_b-junction 3:port_c-junction

L

roughness

2.5&ExponentialE;−5

m

Absolute roughness of pipe, with a default for a smooth steel pipe

roughness

zeta__constant3

1&comma;1&comma;1

Coeffiecient of Local resistance, 1:port_a 2:port_b 3:port_c

(When Tee calculation = Constant zeta)

zeta_constant

vflow__dp3

1.0&comma;0.5&comma;0.5

m3s

Design points in Volume Flow Rate, 1:port_a 2:port_b 3:port_c

(When Tee calculation = Idelchik with design point or  Idelchik with actual flow ratio)

vflow_dp

mflow__dp3

1.0&comma;0.5&comma;0.5

kgs

Design points in Mass Flow Rate, 1:port_a 2:port_b 3:port_c

(When Tee calculation = Rennels with design point or  Rennels with actual flow ratio)

mflow_dp

v__dp3

1.0&comma;0.5&comma;0.5

ms

Design points in Flow velocity, 1:port_a 2:port_b 3:port_c

(When Tee calculation = Blevins with design point or  Blevins with actual flow ratio)

v_dp

zeta__con_in

0.7

Loss coefficient for case of converging to branch, intake side, Default value is obtained from Rannels

zeta_branch_converging_in

&zeta;__div_ex

30

Loss coefficient for case of diverging to branch, exhaust side, Default value is obtained from Rannels

zeta_branch_diverging_ex

&zeta;__0

1

Loss coefficient, around zero pressure difference

zeta_zero

zeta__min

0.001

Loss coefficient, minimum value

zeta_min

&lambda;__const3

0.15&ExponentialE;−4&comma;  0.15&ExponentialE;−4&comma;  0.15&ExponentialE;−4

Friction coefficient for Darcy-Weisbach equation

(When Friction calculation = constant)

lambda_const

v__dp_fric3

1.0&comma;0.5&comma;0.5

ms

Design points in Flow velocity, 1:port_a 2:port_b 3:port_c

(When Friction calculation = Darcy-Weisbach with Constant velocity (Design point))

v_dp_fric

V

1

m3

Volume of control volume

V

p__start

101325

Pa

Initial condition of pressure, junction node

p_start

T__start

293.15

K

Initial condition of temperature, junction node

T_start

T__const

0.001

s

Time constant for Reynolds number changing

T_const

sharpness

1.0

Sharpness of approximation for sqrt(dp) and sqrt(rho * dp)

sharpness

dp__small

0.1

Pa

Regularization of zero flow if |dp| < dp_small (dummy if use_dp_small = false)

dp_small

Re__CoT

3500

Reynolds number of the center of Transition zone

Re_CoT

IF__spread

0.007

Spread of Intermittency factor

IF_spread

See Also

Heat Transfer Library Overview

Water Overview

Water Shapes Overview