Lovasz - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Hypergraphs[ExampleHypergraphs]

  

Lovasz

  

Return the Lovasz hypergraph of a given rank

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

Lovasz(r)

Parameters

r

-

posint

Description

• 

The command Lovasz(r) returns the Lovasz hypergraph of rank r.

• 

A formal definition  can be found on P. 58 in the English version (available online) of the book of Claude Berge  referenced below.

Remarks

• 

The hypergraph Lovasz(r)  is auto-transversal, that is, Lovasz(r) and its transversal hypergraph are equal.

Terminology

• 

Transversal : If H :=(X, Y) is a hypergraph, then a subset S of X is transversal to H whenever S has a non-empty intersection with every hyperedge of H. If H :=(X, Y) is a hypergraph, then the transversal hypergraph of H is the hypergraph (X, Z) where Z consists of all transversals to H that are minimal w.r.t. inclusion.

Examples

withHypergraphs:withExampleHypergraphs:

Create the Lovasz hypergraph  of rank 4

HLovasz4

H< a hypergraph on 10 vertices with 41 hyperedges >

(1)

Print its vertices and edges.

VerticesH&semi;HyperedgesH

1&comma;2&comma;3&comma;4&comma;5&comma;6&comma;7&comma;8&comma;9&comma;10

1&comma;2&comma;4&comma;7&comma;1&comma;3&comma;4&comma;7&comma;2&comma;3&comma;4&comma;7&comma;1&comma;2&comma;5&comma;7&comma;1&comma;3&comma;5&comma;7&comma;2&comma;3&comma;5&comma;7&comma;1&comma;2&comma;6&comma;7&comma;1&comma;3&comma;6&comma;7&comma;2&comma;3&comma;6&comma;7&comma;4&comma;5&comma;6&comma;7&comma;1&comma;2&comma;4&comma;8&comma;1&comma;3&comma;4&comma;8&comma;2&comma;3&comma;4&comma;8&comma;1&comma;2&comma;5&comma;8&comma;1&comma;3&comma;5&comma;8&comma;2&comma;3&comma;5&comma;8&comma;1&comma;2&comma;6&comma;8&comma;1&comma;3&comma;6&comma;8&comma;2&comma;3&comma;6&comma;8&comma;4&comma;5&comma;6&comma;8&comma;1&comma;2&comma;4&comma;9&comma;1&comma;3&comma;4&comma;9&comma;2&comma;3&comma;4&comma;9&comma;1&comma;2&comma;5&comma;9&comma;1&comma;3&comma;5&comma;9&comma;2&comma;3&comma;5&comma;9&comma;1&comma;2&comma;6&comma;9&comma;1&comma;3&comma;6&comma;9&comma;2&comma;3&comma;6&comma;9&comma;4&comma;5&comma;6&comma;9&comma;1&comma;2&comma;4&comma;10&comma;1&comma;3&comma;4&comma;10&comma;2&comma;3&comma;4&comma;10&comma;1&comma;2&comma;5&comma;10&comma;1&comma;3&comma;5&comma;10&comma;2&comma;3&comma;5&comma;10&comma;1&comma;2&comma;6&comma;10&comma;1&comma;3&comma;6&comma;10&comma;2&comma;3&comma;6&comma;10&comma;4&comma;5&comma;6&comma;10&comma;7&comma;8&comma;9&comma;10

(2)

Draw a graphical representation of this hypergraph.

DrawH

Draw the line graph of H.

GLineGraphH&semi;GraphTheory:-DrawGraphG

GGraph 1: an undirected graph with 41 vertices, 820 edge(s), and 41 self-loop(s)

Compute the transversal hypergraph T of H.

TTransversalH

T< a hypergraph on 10 vertices with 41 hyperedges >

(3)

Check that H is auto-transversal, that is, H and T are equal.

AreEqualH&comma;T

true

(4)

References

  

Claude Berge. Hypergraphes. Combinatoires des ensembles finis. 1987,  Paris, Gauthier-Villars, translated to English.

  

Claude Berge. Hypergraphs. Combinatorics of Finite Sets.  1989, Amsterdam, North-Holland Mathematical Library, Elsevier, translated from French.

  

Charles Leiserson, Liyun Li, Marc Moreno Maza and Yuzhen Xie " Parallel computation of the minimal elements of a poset." Proceedings of the 4th International Workshop on Parallel Symbolic Computation (PASCO) 2010: 53-62, ACM.

Compatibility

• 

The Hypergraphs[ExampleHypergraphs][Lovasz] command was introduced in Maple 2024.

• 

For more information on Maple 2024 changes, see Updates in Maple 2024.

See Also

Hypergraphs[Transversal]