Rank - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Hypergraphs

  

Rank

  

Return the maximum cardinality of an hyperedge

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

Rank(H)

Parameters

H

-

Hypergraph

Description

• 

The command Rank(H) returns the rank of the hypergraph H.

Terminology

• 

Rank : the rank of a hypergraph  H :=(X, Y)  is the maximum cardinality of a hyperedge of H.

• 

Anti-rank : the anti-rank of a hypergraph  H :=(X, Y)  is the minimum cardinality of a hyperedge of H.

Examples

withHypergraphs:withExampleHypergraphs:

Create a hypergraph from its vertices and edges.

HHypergraph1,2,3,4,5,6,7,1,2,3,2,3,4,3,5,6

H< a hypergraph on 7 vertices with 4 hyperedges >

(1)

Print its vertices and edges.

Hypergraphs:-VerticesH&semi;HyperedgesH

1&comma;2&comma;3&comma;4&comma;5&comma;6&comma;7

4&comma;2&comma;3&comma;1&comma;2&comma;3&comma;3&comma;5&comma;6

(2)

Compute the degree profile of H.

DegreeProfileH

1&comma;2&comma;3&comma;1&comma;1&comma;1&comma;0

(3)

Compute the rank and the anti-rank of H.

RankH&semi;AntiRankH

3

1

(4)

Check whether H is regular.

IsRegularH

false

(5)

Check whether H is uniform.

IsUniformH

false

(6)

Create another hypergraph.

HLovasz3

H< a hypergraph on 6 vertices with 10 hyperedges >

(7)

Print its vertices and edges.

Hypergraphs:-VerticesH&semi;HyperedgesH

1&comma;2&comma;3&comma;4&comma;5&comma;6

1&comma;2&comma;4&comma;1&comma;3&comma;4&comma;2&comma;3&comma;4&comma;1&comma;2&comma;5&comma;1&comma;3&comma;5&comma;2&comma;3&comma;5&comma;1&comma;2&comma;6&comma;1&comma;3&comma;6&comma;2&comma;3&comma;6&comma;4&comma;5&comma;6

(8)

Compute the degree profile of H.

DegreeProfileH

6&comma;6&comma;6&comma;4&comma;4&comma;4

(9)

Compute the rank and the anti-rank of H.

RankH&semi;AntiRankH

3

3

(10)

Check whether H is regular.

IsRegularH

false

(11)

Check whether H is uniform.

IsUniformH

true

(12)

Create another hypergraph.

HKuratowski1&comma;2&comma;3&comma;4&comma;5&comma;3

H< a hypergraph on 5 vertices with 10 hyperedges >

(13)

Print its vertices and edges.

Hypergraphs:-VerticesH&semi;HyperedgesH

1&comma;2&comma;3&comma;4&comma;5

1&comma;2&comma;3&comma;1&comma;2&comma;4&comma;1&comma;3&comma;4&comma;2&comma;3&comma;4&comma;1&comma;2&comma;5&comma;1&comma;3&comma;5&comma;2&comma;3&comma;5&comma;1&comma;4&comma;5&comma;2&comma;4&comma;5&comma;3&comma;4&comma;5

(14)

Compute the degree profile of H.

DegreeProfileH

6&comma;6&comma;6&comma;6&comma;6

(15)

Compute the rank and the anti-rank of H.

RankH&semi;AntiRankH

3

3

(16)

Check whether H is regular.

IsRegularH

true

(17)

Check whether H is uniform.

IsUniformH

true

(18)

References

  

Claude Berge. Hypergraphes. Combinatoires des ensembles finis. 1987,  Paris, Gauthier-Villars, translated to English.

  

Claude Berge. Hypergraphs. Combinatorics of Finite Sets.  1989, Amsterdam, North-Holland Mathematical Library, Elsevier, translated from French.

  

Charles Leiserson, Liyun Li, Marc Moreno Maza and Yuzhen Xie " Parallel computation of the minimal elements of a poset." Proceedings of the 4th International Workshop on Parallel Symbolic Computation (PASCO) 2010: 53-62, ACM.

Compatibility

• 

The Hypergraphs[Rank] command was introduced in Maple 2024.

• 

For more information on Maple 2024 changes, see Updates in Maple 2024.

See Also

Hypergraphs[AntiRank]

Hypergraphs[DegreeProfile]

Hypergraphs[IsRegular]

Hypergraphs[IsUniform]

Hypergraphs[Rank]