Overview - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Overview of the IntegrationTools Package

 

Calling Sequence

Description

List of IntegrationTools Package Commands

Examples

Calling Sequence

IntegrationTools:-command(arguments)

command(arguments)

Description

• 

The IntegrationTools package is a set of programmer tools used for low level manipulation of definite and indefinite integrals.

  

Note: This package contains tools for manipulating the data structure only and do not ensure the validity of the operation being performed. For mathematical operations on integrals, use top-level commands such as combine, expand, etc., or the Student package.

• 

At load time the IntegrationTools package defines three new types: Integral, DefiniteIntegral and IndefiniteIntegral, which can be used to access integrals involved in any given expression.

• 

Each command in the IntegrationTools package can be accessed by using either the long form or the short form of the command name in the command calling sequence.

• 

The long form, IntegrationTools:-command is always available. The short form can be used after loading the package.

List of IntegrationTools Package Commands

  

The following is a list of available commands.

Change

CollapseNested

Combine

Expand

ExpandMultiple

Flip

GetIntegrand

GetOptions

GetParts

GetRange

GetVariable

Parts

Split

StripOptions

 

 

  

To display the help page for a particular IntegrationTools command, see Getting Help with a Command in a Package.

Examples

withIntegrationTools:

vIntfx,x=a..b

vabfxⅆx

(1)

typev,Integral

true

(2)

typev,DefiniteIntegral

true

(3)

typev,IndefiniteIntegral

false

(4)

Extract the integrand, variable of integration and range.

GetIntegrandv

fx

(5)

GetVariablev

x

(6)

GetRangev

a..b

(7)

Split a definite integral.

vIntsinx,x=0..2πn

v02πnsinxⅆx

(8)

Splitv,2π

02πsinxⅆx+2π2πnsinxⅆx

(9)

Splitv,2π,4π,6π

02πsinxⅆx+2π4πsinxⅆx+4π6πsinxⅆx+6π2πnsinxⅆx

(10)

Splitv,2πi,i=1..n1

02πsinxⅆx+_j=1n22π_j2π_j+1sinxⅆx+2πn12πnsinxⅆx

(11)

Perform integration by parts.

vIntexpxsinx,x=a..b

vabⅇxsinxⅆx

(12)

Partsv,sinx

ⅇbsinbⅇasinaabⅇxcosxⅆx

(13)

Partsv,expx

ⅇbcosb+ⅇacosaabⅇxcosxⅆx

(14)

Expand an integral.

vIntafx+bgx+chx,x=1..2

v12afx+bgx+chxⅆx

(15)

wExpandv

wa12fxⅆx+b12gxⅆx+c12hxⅆx

(16)

Combine multiple integrals.

Combinew

12afx+bgx+chxⅆx

(17)

CombineIntfx,x=a..b+Intfx,x=b..cIntfx,x=a..d

dcfxⅆx

(18)

See Also

combine

expand

int