LREtools
AnalyticityConditions
analyticity conditions for the solution of linear difference equation.
Calling Sequence
Parameters
Description
Examples
References
AnalyticityConditions(L, E, fun, HalfInt_opt, Direction_opt)
L
-
linear difference operator in E with coefficients which are polynomials in x
E
name of the shift operator acting on x
fun
function f(x) that is a solution of L⁡f⁡x=0
HalfInt_opt
(optional) 'HalfInterval'= A, A is a rational number, 0 by default
Direction_opt
(optional) 'direction'='left' -- the procedure returns the conditions for analyticity of f(x) on ℜ⁡x<A+d or 'direction'='right', the conditions on A≤ℜ⁡x.
The AnalyticityConditions command returns the set of conditions for the analyticity of f(x).
The input includes a difference operator
L := sum(a[i](x)* E^i,i=1..d);
L≔∑i=1d⁡ai⁡x⁢Ei
and a point A. The solution f(x) is analytic on some open set which contains a set A<=Re⁡x<A+d. The procedure returns the set of conditions for the analyticity of f(x) on ℜ⁡x<A+d or A≤ℜ⁡x if the option Direction_Opt is given or on the whole C otherwise. The conditions are linear relations of f(x) and, perhaps, several derivatives of f(x) at the points into A<=Re⁡x<A+d.
with⁡LREtools:
L1≔x−3⁢E2+x3⁢E+x+2⁢x+5318⁢x−722
AnalyticityConditions⁡L1,E,f⁡x,HalfInterval=−1
f⁡−1=0,f⁡0=0,f⁡118=−6716052847⁢f⁡−17184293017172
AnalyticityConditions⁡L1,E,f⁡x
f⁡0=0,f⁡1=0,f⁡1918=−1077057743867711⁢f⁡118154496079692388
AnalyticityConditions⁡L1,E,f⁡x,HalfInterval=−1,direction=left
f⁡0=−8⁢f⁡−15,f⁡118=−6716052847⁢f⁡−17184293017172
AnalyticityConditions⁡L1,E,f⁡x,HalfInterval=−1,direction=right
f⁡0=−80951794875⁢f⁡−129374512824
L2≔−25⁢x2−4−15⁢x3−16⁢x−3⁢x4⁢E2+38⁢x2+8+6⁢x4+28⁢x+24⁢x3⁢E−3⁢x4−7⁢x2−9⁢x3
L2≔−3⁢x4−15⁢x3−25⁢x2−16⁢x−4⁢E2+6⁢x4+24⁢x3+38⁢x2+28⁢x+8⁢E−3⁢x4−7⁢x2−9⁢x3
cond≔AnalyticityConditions⁡L2,E,f⁡x,HalfInterval=1
cond≔2⁢ⅆⅆxf⁡xx=1|ⅆⅆxf⁡xx=1−ⅆⅆxf⁡xx=2|ⅆⅆxf⁡xx=2−f⁡1=0,4⁢ⅆⅆxf⁡xx=1|ⅆⅆxf⁡xx=1−2⁢ⅆⅆxf⁡xx=2|ⅆⅆxf⁡xx=2−f⁡2=0
solution f(x) = x is analytic everywhere on C:
f≔x↦x:
map⁡evalb,cond
true
solution f(x) = x->1/x^2 is not analytic anywhere on C:
f≔x↦1x2:
false
unassign⁡f
L3≔x2⁢E2−3⁢x−3⁢E+x+35:
AnalyticityConditions⁡L3,E,f⁡x,HalfInterval=−2
−ⅆⅆxf⁡xx=−2|ⅆⅆxf⁡xx=−2=0,−ⅆⅆxf⁡xx=−1|ⅆⅆxf⁡xx=−1=0,−3⁢ⅆ2ⅆx2f⁡xx=−1|ⅆ2ⅆx2f⁡xx=−14−ⅆ2ⅆx2f⁡xx=−2|ⅆ2ⅆx2f⁡xx=−2=0,5⁢ⅆ2ⅆx2f⁡xx=−1|ⅆ2ⅆx2f⁡xx=−14−4⁢ⅆ3ⅆx3f⁡xx=−2|ⅆ3ⅆx3f⁡xx=−23−ⅆ3ⅆx3f⁡xx=−1|ⅆ3ⅆx3f⁡xx=−1=0,2⁢ⅆ2ⅆx2f⁡xx=−1|ⅆ2ⅆx2f⁡xx=−1−20⁢ⅆ3ⅆx3f⁡xx=−2|ⅆ3ⅆx3f⁡xx=−29−4⁢ⅆ4ⅆx4f⁡xx=−2|ⅆ4ⅆx4f⁡xx=−23−ⅆ4ⅆx4f⁡xx=−1|ⅆ4ⅆx4f⁡xx=−1=0,f⁡−2=0,f⁡−1=0
L4≔x−3⁢E2+x3⁢E+x2−7
AnalyticityConditions⁡L4,E,f⁡x,HalfInterval=4
−2847570073663+1076682966841⁢7⁢101688272435223861⁢f⁡−7+8⁢7+915038971234759964687⁢f⁡−7+7+8271571450251894539⁢f⁡−7+85976888153870054527741134080=0,5593+1747⁢7⁢52474⁢f⁡7+2+39053⁢f⁡7+3−14497⁢f⁡7+3⁢719835172=0
L5≔2⁢x2+2⁢x−3⁢E2−3⁢x+7⁢x−3⁢E+x+3⁢x+1
AnalyticityConditions⁡L5,E,f⁡x,HalfInterval=−3
−−300568+159517⁢I⁢2⁢27363716⁢I⁢f⁡−3+I⁢2⁢2+797212393⁢f⁡−2+I⁢2−52604455⁢f⁡−3+I⁢21545648142946688=0,300568+159517⁢I⁢2⁢−27363716⁢I⁢f⁡−3−I⁢2⁢2+797212393⁢f⁡−2−I⁢2−52604455⁢f⁡−3−I⁢21545648142946688=0,f⁡−2=0
Abramov, S.A., and van Hoeij, M. "Set of Poles of Solutions of Linear Difference Equations with Polynomial Coefficients." Computation Mathematics and Mathematical Physics. Vol. 43 No. 1. (2003): 57-62.
See Also
LREtools[IsDesingularizable]
LREtools[ValuesAtPoint]
Download Help Document