AnalyticityConditions - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LREtools

  

AnalyticityConditions

  

analyticity conditions for the solution of linear difference equation.

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

AnalyticityConditions(L, E, fun, HalfInt_opt, Direction_opt)

Parameters

L

-

linear difference operator in E with coefficients which are polynomials in x

E

-

name of the shift operator acting on x

fun

-

function f(x) that is a solution of Lfx=0

HalfInt_opt

-

(optional) 'HalfInterval'= A, A is a rational number, 0 by default

Direction_opt

-

(optional) 'direction'='left' -- the procedure returns the conditions for analyticity of f(x) on x<A+d or 'direction'='right', the conditions on Ax.

Description

• 

The AnalyticityConditions command returns the set of conditions for the analyticity of f(x).

• 

The input includes a difference operator

L := sum(a[i](x)* E^i,i=1..d);

Li=1daixEi

(1)
  

and a point A. The solution f(x) is analytic on some open set which contains a set A<=Rex<A+d. The procedure returns the set of conditions for the analyticity of f(x) on x<A+d or Ax if the option Direction_Opt is given or on the whole C otherwise. The conditions are linear relations of f(x) and, perhaps, several derivatives of f(x) at the points into A<=Rex<A+d.

Examples

withLREtools&colon;

L1x3E2+x3E+x+2x+5318x722

L1x3E2+x3E+x+2x+5318x722

(2)

AnalyticityConditionsL1&comma;E&comma;fx&comma;HalfInterval=1

f−1=0&comma;f0=0&comma;f118=6716052847f17184293017172

(3)

AnalyticityConditionsL1&comma;E&comma;fx

f0=0&comma;f1=0&comma;f1918=1077057743867711f118154496079692388

(4)

AnalyticityConditionsL1&comma;E&comma;fx&comma;HalfInterval=1&comma;direction=left

f0=8f−15&comma;f118=6716052847f17184293017172

(5)

AnalyticityConditionsL1&comma;E&comma;fx&comma;HalfInterval=1&comma;direction=right

f0=80951794875f−129374512824

(6)

L225x2415x316x3x4E2+38x2+8+6x4+28x+24x3E3x47x29x3

L23x415x325x216x4E2+6x4+24x3+38x2+28x+8E3x47x29x3

(7)

condAnalyticityConditionsL2&comma;E&comma;fx&comma;HalfInterval=1

cond2&DifferentialD;&DifferentialD;xfxx=1|&DifferentialD;&DifferentialD;xfxx=1&DifferentialD;&DifferentialD;xfxx=2|&DifferentialD;&DifferentialD;xfxx=2f1=0&comma;4&DifferentialD;&DifferentialD;xfxx=1|&DifferentialD;&DifferentialD;xfxx=12&DifferentialD;&DifferentialD;xfxx=2|&DifferentialD;&DifferentialD;xfxx=2f2=0

(8)

solution f(x) = x is analytic everywhere on C:

fxx&colon;

mapevalb&comma;cond

true

(9)

solution f(x) = x->1/x^2 is not analytic anywhere on C:

fx1x2&colon;

mapevalb&comma;cond

false

(10)

unassignf

L3x2E23x3E+x+35&colon;

AnalyticityConditionsL3&comma;E&comma;fx&comma;HalfInterval=2

&DifferentialD;&DifferentialD;xfxx=−2|&DifferentialD;&DifferentialD;xfxx=−2=0&comma;&DifferentialD;&DifferentialD;xfxx=−1|&DifferentialD;&DifferentialD;xfxx=−1=0&comma;3&DifferentialD;2&DifferentialD;x2fxx=−1|&DifferentialD;2&DifferentialD;x2fxx=−14&DifferentialD;2&DifferentialD;x2fxx=−2|&DifferentialD;2&DifferentialD;x2fxx=−2=0&comma;5&DifferentialD;2&DifferentialD;x2fxx=−1|&DifferentialD;2&DifferentialD;x2fxx=−144&DifferentialD;3&DifferentialD;x3fxx=−2|&DifferentialD;3&DifferentialD;x3fxx=−23&DifferentialD;3&DifferentialD;x3fxx=−1|&DifferentialD;3&DifferentialD;x3fxx=−1=0&comma;2&DifferentialD;2&DifferentialD;x2fxx=−1|&DifferentialD;2&DifferentialD;x2fxx=−120&DifferentialD;3&DifferentialD;x3fxx=−2|&DifferentialD;3&DifferentialD;x3fxx=−294&DifferentialD;4&DifferentialD;x4fxx=−2|&DifferentialD;4&DifferentialD;x4fxx=−23&DifferentialD;4&DifferentialD;x4fxx=−1|&DifferentialD;4&DifferentialD;x4fxx=−1=0&comma;f−2=0&comma;f−1=0

(11)

L4x3E2+x3E+x27

L4x3E2+x3E+x27

(12)

AnalyticityConditionsL4&comma;E&comma;fx&comma;HalfInterval=4

2847570073663+10766829668417101688272435223861f7+87+915038971234759964687f7+7+8271571450251894539f7+85976888153870054527741134080=0&comma;5593+1747752474f7+2+39053f7+314497f7+3719835172=0

(13)

L52x2+2x3E23x+7x3E+x+3x+1

L52x2+2x3E23x+7x3E+x+3x+1

(14)

AnalyticityConditionsL5&comma;E&comma;fx&comma;HalfInterval=3

300568+159517I227363716If3+I22+797212393f2+I252604455f3+I21545648142946688=0&comma;300568+159517I227363716If3I22+797212393f2I252604455f3I21545648142946688=0&comma;f−2=0

(15)

References

  

Abramov, S.A., and van Hoeij, M. "Set of Poles of Solutions of Linear Difference Equations with Polynomial Coefficients." Computation Mathematics and Mathematical Physics. Vol. 43 No. 1. (2003): 57-62.

See Also

LREtools

LREtools[IsDesingularizable]

LREtools[ValuesAtPoint]