mhypergeomsols - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LREtools

  

mhypergeomsols

  

compute m-fold hypergeometric term solutions of holonomic recurrence equations

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

mhypergeomsols(rec, a(n), field, mj=[m,j])

Parameters

rec

-

holonomic recurrence equation

a(n)

-

unknown recurrence term, where n is the index variable

field

-

(optional) either complex or rational (default)

mj=[m,j]

-

(optional) list of two non-negative integers m&comma;j, where 0j<m, to compute a specific m-fold hypergeometric term solution of rec

Description

• 

The LREtools[mhypergeomsols] command computes m-fold hypergeometric term solutions of holonomic recurrence equations, i.e. linear homogeneous recurrence equation with polynomial coefficients, where m is a positive integer. An m-fold hypergeometric term an is such that an+man is a rational function of n over the considered field.

• 

All appearances of the dependent variable a(.) in the rec must be of the form an+k, where k is an integer.

• 

The output is a list of pairs m&comma;Hm, where m is a positive integer and Hmis a nonempty set of hypergeometric terms, or, when mj=[m,j] is specified, just a single set Hm of hypergeometric terms.

– 

When mj is not specified, each hHm corresponds to an m-fold hypergeometric term t via tnm=hn for n0 and tk=0 when m does not divide k&gt;0.

– 

When mj=[m,j] is given, each hHm corresponds to an m-fold hypergeometric term t via tnm+j=hn for n0 and tk=0 when k0 and m does not divide kj.

• 

In the former case, when mj is not given, for all positive integers m occurring in the result, the set of corresponding m-fold hypergeometric terms constitutes a basis of the solution space for j=0. The other solutions can be computed afterwards by calling mhypergeomsols with mj=[m,j], where m is a value taken from the result and 0j<m.

• 

The field of computation is controlled by the field parameter. When complex is supplied, the computation considers algebraic extension fields; this includes solutions containing symbols. By default, field equals rational and the corresponding field is the rational field  without any symbols.

Examples

withLREtools&colon;

REn+1n+2n+3n+4an+4+10n+1n+2an+2+9an=0

REn+1n+2n+3n+4an+4+10n+1n+2an+2+9an=0

(1)

solmhypergeomsolsRE&comma;an

sol2&comma;−9n2n!&comma;−1n2n!

(2)

sol1unapplyevalop1&comma;2&comma;1&comma;sol&comma;n=n2&comma;n

sol1n−9n2n!

(3)

normalexpandevalRE&comma;a=sol1

0=0

(4)

sol2unapplyevalop1&comma;2&comma;2&comma;sol&comma;n=n2&comma;n

sol2n−1n2n!

(5)

normalexpandevalRE&comma;a=sol2

0=0

(6)

One finds more solutions when allowing algebraic extension fields.

mhypergeomsolsRE&comma;an&comma;complex

1&comma;RootOf_Z2+1nn!&comma;RootOf_Z2+9nn!&comma;2&comma;−9n2n!&comma;−1n2n!

(7)

The algebraic form (without RootOf) can be obtained using allvalues.

mapallvalues&comma;mhypergeomsolsRE&comma;an&comma;complex&comma;mj=1&comma;0

3Inn!&comma;−Inn!&comma;Inn!&comma;3Inn!

(8)

These latter hypergeometric terms (for m=1 only) can also be computed using LREtools[hypergeomsols].

hypergeomsolsRE&comma;an&comma;&comma;output=basis

3InΓn+1&comma;3InΓn+1&comma;−InΓn+1&comma;InΓn+1

(9)

As done with mj=1&comma;0, one can recover the 2-fold hypergeometric solutions similarly. Below we compute the other interlacing terms related to these solutions. They correspond to mj=2&comma;1.

solmhypergeomsolsRE&comma;an&comma;complex&comma;mj=2&comma;1

sol−9n2n+12n!&comma;−1n2n+12n!

(10)

sol1unapplyevalsol1&comma;n=n12&comma;n

sol1n−9n212nn1!

(11)

normalexpandevalRE&comma;a=sol1

0=0

(12)

sol2unapplyevalsol2&comma;n=n12&comma;n

sol2n−1n212nn1!

(13)

normalexpandevalRE&comma;a=sol2

0=0

(14)

More examples.

REn+1an4pn+1an2qn+1an1+pqn+1an+1=0

REn+1an4pn+1an2qn+1an1+pqn+1an+1=0

(15)

mhypergeomsolsRE&comma;an&comma;complex

1&comma;RootOfp_Z21n&comma;RootOfq_Z31n&comma;2&comma;1pn&comma;3&comma;1qn

(16)

RE9n132an13+3n19n102an1018n9n11an9+3n10n72an7+6n6n221n+116an69n5n9an5+2n6n17n3an3+3n2n6n7an2n2n3n+1an+1=0

RE9n132an13+3n19n102an1018n9n11an9+3n10n72an7+6n6n221n+116an69n5n9an5+2n6n17n3an3+3n2n6n7an2n2n3n+1an+1=0

(17)

mhypergeomsolsRE&comma;an

3&comma;1n!&comma;4&comma;−1nn

(18)

RE5n6n112an115n5n102an1032n19n4n9an9+32n17n3n8an83n2n7an7n697n597an6+n597n500an5n42n2115n+513an4+n32n2111n+400an33n2n7an2n15n8n6an1+n5n3n5an+4nn+1n4an+14n+1n+2n3an+2=0

RE5n6n112an115n5n102an1032n19n4n9an9+32n17n3n8an83n2n7an7n697n597an6+n597n500an5n42n2115n+513an4+n32n2111n+400an33n2n7an2n15n8n6an1+n5n3n5an+4nn+1n4an+14n+1n+2n3an+2=0

(19)

mhypergeomsolsRE&comma;an

1&comma;−1n&comma;2&comma;n!24nn22n!&comma;5&comma;−1n

(20)

The recurrence equation may contain symbolic functions.

RE2expx2lnx12n152an15+expxlnx12n19n132an13+lnx12n13n112an114expx2lnx6n9n12an9+2expxlnx6n7n220n+127an7lnx6n5n+19n7an52expx2n3n9an3+expxn7n12an12n5n1n+1an+1=0

RE2&ExponentialE;x2lnx12n152an15+&ExponentialE;xlnx12n19n132an13+lnx12n13n112an114&ExponentialE;x2lnx6n9n12an9+2&ExponentialE;xlnx6n7n220n+127an7lnx6n5n+19n7an52&ExponentialE;x2n3n9an3+&ExponentialE;xn7n12an12n5n1n+1an+1=0

(21)

mhypergeomsolsRE&comma;an&comma;complex

1&comma;−Ilnxnn&comma;Ilnxnn&comma;I3lnx2nn&comma;I3lnx2nn&comma;3+Ilnx2nn&comma;3+Ilnx2nn&comma;2&comma;I2I3lnx2nn&comma;I2lnx23+Inn&comma;lnx2nn&comma;&ExponentialE;xnn!&comma;3&comma;−Ilnx3nn&comma;Ilnx3nn&comma;6&comma;lnx6nn

(22)

References

  

Bertrand Teguia Tabuguia and Wolfram Koepf. Symbolic conversion of holonomic functions to hypergeometric type power series. Computer Algebra issue of the Journal of Programming and Computer Software. February 2022.

  

Bertrand Teguia Tabuguia. Power Series Representations of Hypergeometric Type and Non-Holonomic Functions in Computer Algebra. Ph.D. thesis. University of Kassel, Germany. May 2020.

  

Bertrand Teguia Tabuguia. A variant of van Hoeij's algorithm to compute hypergeometric term solutions of holonomic recurrence equations. arXiv:2012.11513 [cs.SC]. December 2020.

Compatibility

• 

The LREtools[mhypergeomsols] command was introduced in Maple 2022.

• 

For more information on Maple 2022 changes, see Updates in Maple 2022.

See Also

convert/FormalPowerSeries

DEtools[FindODE]

gfun[diffeqtorec]

LREtools[hypergeomsols]

Slode[mhypergeom_series_sol]