LerchPhi - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LerchPhi

general Lerch Phi function

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

LerchPhi(z, a, v)

Parameters

z

-

algebraic expression

a

-

algebraic expression

v

-

algebraic expression

Description

• 

The Lerch Phi function is defined as follows:

LerchPhiz,a,v=n=0znv+na

  

This definition is valid for z<1 or z=1and1<a. By analytic continuation, it is extended to the whole complex z-plane for each value of a and v.

• 

If v and a are positive integers, LerchPhi(z, a, v) has a branch cut in the z-plane along the real axis to the right of z=1, with a branch point at z=1.

• 

If a is a non-positive integer, LerchPhi(z, a, v) is a rational function of z with a pole of order 1a at z=1.

• 

LerchPhi(1,a,v) = Zeta(0,a,v).  If 1<a, it is also true that limit(LerchPhi(z,a,v),z=1) = Zeta(0,a,v). If a1, this limit does not exist.

• 

If 0a and a is not an integer, LerchPhi(z, a, v) has an infinite singularity at each non-positive integer v.

• 

If the coefficients of the series representation of a hypergeometric function are rational functions of the summation indices, then the hypergeometric function can be expressed as a linear sum of Lerch Phi functions.

• 

If the parameters of the hypergeometric functions are rational, we can express the hypergeometric function as a linear sum of polylog functions.

Examples

LerchPhi3&comma;4&comma;1

polylog4&comma;33

(1)

LerchPhi0&comma;7&comma;4

116384

(2)

LerchPhi4&comma;0&comma;3

13

(3)

LerchPhiz&comma;a&comma;1

polyloga&comma;zz

(4)

LerchPhi1&comma;z&comma;1

ζz

(5)

diffLerchPhiz&comma;3&comma;4&comma;z

LerchPhiz&comma;2&comma;4z4LerchPhiz&comma;3&comma;4z

(6)

References

  

Erdelyi, A. Higher Transcendental Functions. McGraw-Hill, 1953.

See Also

hypergeom

polylog

Zeta