IsInvariant
check if a distribution is invariant under Lie group action
Calling Sequence
Parameters
Description
Examples
Compatibility
IsInvariant(dist, L)
dist
-
a Distribution object.
L
a LAVF object
The IsInvariant method decides whether Distribution object dist is invariant under the action of the Lie transformation group generated by the vector fields from a LAVF object L. It returns the values true or false.
For this method to make sense, Distribution dist must be in involution (see IsInvolutive), and L must specify a Lie algebra (see IsLieAlgebra). An involutive distribution Σ is invariant under a Lie group action if the foliation induced by Σ maps to itself (i.e. leaves map to leaves).
This method is associated with the Distribution object. For more detail see Overview of the Distribution object.
with⁡LieAlgebrasOfVectorFields:
Typesetting:-Settings⁡userep=true:
Building a LAVF object
Typesetting:-Suppress⁡η⁡x,y,ξ⁡x,y,ζ⁡z
X≔VectorField⁡ξ⁡x,y⁢Dx+η⁡x,y⁢Dy+ζ⁡z⁢Dz,space=x,y,z
X≔ξ⁢ⅆⅆx+η⁢ⅆⅆy+ζ⁢ⅆⅆz
Sys≔LHPDE⁡diff⁡ξ⁡x,y,x=0,diff⁡ξ⁡x,y,y=1y⁢ξ⁡x,y,η⁡x,y=−xy⁢ξ⁡x,y,diff⁡ζ⁡z,z,z=0,indep=x,y,z,dep=ξ,η,ζ
Sys≔ξx=0,ξy=ξy,η=−x⁢ξy,ⅆ2ζⅆz2=0,indep=x,y,z,dep=ξ,η,ζ
L≔LAVF⁡X,Sys
L≔ξ⁢ⅆⅆx+η⁢ⅆⅆy+ζ⁢ⅆⅆz&whereⅆ2ζⅆz2=0,ηx=ηx,ηy=0,ξ=−η⁢yx
Building some Distribution objects
Tx≔VectorField⁡Dx,space=x,y,z
Tx≔ⅆⅆx
Ty≔VectorField⁡Dy,space=x,y,z
Ty≔ⅆⅆy
Σ≔Distribution⁡Tx,Ty
Σ≔ⅆⅆx,ⅆⅆy
Gamma≔Distribution⁡Tx
Γ≔ⅆⅆx
Now we test if the following distributions are invariant under L
IsInvariant⁡Σ,L
true
IsInvariant⁡Gamma,L
false
The IsInvariant command was introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
Distribution (Object overview)
LieAlgebrasOfVectorFields[Distribution]
VectorField (Object overview)
LieAlgebrasOfVectorFields[VectorField]
LieAlgebrasOfVectorFields (Package overview)
Download Help Document