IsLinearizable - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LieAlgebrasOfVectorFields

  

IsLinearizable

  

Checking if an ODE system can be transformed into a linear one

 

Calling Sequence

Parameters

Description

Calling Sequence

IsLinearizable(DEs, V)

Parameters

DEs

-

an equation or a list of differential equations

V

-

a VectorField object

Description

• 

The command IsLinearizable(...) checks if an ordinary differential equations (ODEs) system can be transformed to a linear ODE by a point transformation. In other words, let S be a single ODE system with a single dependent variable u and independent variable x. Then the method returns true if there exists an invertible transformation x=ψz,w,u=φz,w to a single linear ODE, for some smooth function ψ and φ, and return false otherwise.

• 

The second input argument is a VectorField object where the first argument ODEs is associated with. For more detail about how to construct a VectorField object, see LieAlgebrasOfVectorFields[VectorField]

• 

This command is part of the LieAlgebrasOfVectorFields package. For more detail, see Overview of the LieAlgebrasOfVectorFields package.

• 

This command can be used in the form IsLinearizable(...) only after executing the command with(LieAlgebrasOfVectorFields), but can always be used in the form :-LieAlgebrasOfVectorFields:-IsLinearizable(...).

with(LieAlgebrasOfVectorFields);

Differential,DisplayStructure,Distribution,EliminationLAVF,EliminationSystem,IDBasis,IsLinearizable,LAVF,LHLibrary,LHPDE,LHPDO,MapDE,OneForm,SymmetryLAVF,VFPDO,VectorField

(1)

Typesetting:-Settings(userep=true);

false

(2)

Typesetting:-Suppress([xi(x,y),eta(x,y)]);

V := VectorField(xi(x,u)*D[x] + eta(x,u)*D[u], space = [x,u]);

Vξx,uⅆⅆx+ηx,uⅆⅆu

(3)

ODE[1] := diff(u(x),x,x,x) + u(x)*diff(u(x),x,x)^2 + 2*u(x) = 0;

ODE1ⅆ3ⅆx3ux+uxⅆ2ⅆx2ux2+2ux=0

(4)

L := IsLinearizable(ODE[1], V);

Lfalse

(5)

ODE[2] := 2*x^2*u(x)*diff(u(x),x,x,x,x) + x^2*u(x)^2 + 8*x^2*diff(u(x),x)*diff(u(x),x,x,x) + 16*x*u(x)*diff(u(x),x,x,x) + 6*x^2*diff(u(x),x,x)^2 + 48*x*diff(u(x),x)*diff(u(x),x,x) + 24*u(x)*diff(u(x),x,x) + 24*diff(u(x),x)^2 = 0;

ODE22x2uxⅆ4ⅆx4ux+x2ux2+8x2ⅆⅆxuxⅆ3ⅆx3ux+16xuxⅆ3ⅆx3ux+6x2ⅆ2ⅆx2ux2+48xⅆⅆxuxⅆ2ⅆx2ux+24uxⅆ2ⅆx2ux+24ⅆⅆxux2=0

(6)

IsLinearizable(ODE[2], V);

true

(7)

ODE[3] := diff(u(x), x, x, x) + 3*diff(u(x), x)*(diff(u(x), x, x) - diff(u(x), x))/u(x) - 3*diff(u(x), x, x) + 2*diff(u(x), x) - u(x) = 0;

ODE3ⅆ3ⅆx3ux+3ⅆⅆxuxⅆ2ⅆx2uxⅆⅆxuxux3ⅆ2ⅆx2ux+2ⅆⅆxuxux=0

(8)

IsLinearizable(ODE[3], V);

true

(9)

FalknerEq := diff(u(x), x, x, x) + u(x)*diff(u(x), x, x) + beta*(1 - diff(u(x), x, x)^2) = 0;

FalknerEqⅆ3ⅆx3ux+uxⅆ2ⅆx2ux+β1ⅆ2ⅆx2ux2=0

(10)

IsLinearizable(FalknerEq, V);

false

(11)

See Also

LieAlgebrasOfVectorFields (Package overview)

LAVF (Object overview)