Overview - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Overview of the LAVF Object

 

Description

LAVF Object Methods

Examples

Description

• 

The LAVF object is designed and created to represent a Lie algebras of vector field (LAVF). An LAVF is usually of the form before solving the symmetry determining system to get solution vector fields.

• 

There are more than 60 methods that are available for a LAVF object, types of methods including (i) basic and solution properties of a LAVF, (ii) Lie algebraic and geometrical properties of a LAVF, (iii) Lie algebraic and geometrical relationships among LAVFs, (iv) utility methods for manipulating a LAVF (or LAVFs). Some Maple existing builtins are extended for allowing LAVF object.

• 

A valid LAVF object is automatically in a rif-reduced form with respect to a ranking that is in total degree ranking. See methods IsRifReduced, IsTotalDegreeRanking and GetRanking of a LHPDE object.

• 

The LAVF object is allowed to be either of finite or infinite type. And the form of its determining system can be un-solved, or solved, or any forms in between (i.e. partially solved).

• 

All methods of the LAVF object become available only once a valid LAVF object is constructed successfully. To construct a LAVF object, see LieAlgebrasOfVectorFields[LAVF].

• 

The LAVF object is the main Maple object exported by the LieAlgebrasOfVectorFields package. See Overview of the LieAlgebrasOfVectorFields package for more detail.

• 

A LAVF object is mathematically represented by the formal vector field as a VectorField object and the determining system as a LHPDE object. Here the components of the formal vector field must be (part of) the dependent variables of the determining system.These two data attributes can be accessed via the GetVectorField and GetDeterminingSystem methods.

• 

After a LAVF object L is successfully constructed, each method in L can be accessed by either the short form method(L, arguments) or the long form L:-method(L, arguments).

LAVF Object Methods

• 

After a LAVF object is constructed, the following methods are available:

AdjointMatrix

AreCommuting

AreSame

AreSameSpace

Centraliser

Centre

CleanDependencies

Copy

DChange

DerivedAlgebra

DerivedSeries

GetDeterminingSystem

GetIDBasis

GetSpace

GetVectorField

Hypercentre

ImplicitForm

Intersection

InvariantCount

Invariants

IsAbelian

IsCommutative

IsFiniteType

IsFlat

IsIdeal

IsInvariant

IsLieAlgebra

IsNilpotent

IsPerfect

IsReductive

IsSemiSimple

IsSolvable

IsSubspace

IsTransitive

IsTrivial

KillingForm

KillingOrthogonal

KillingPolynomial

KillingRadical

LAVFSolve

LieProduct

LowerCentralSeries

NilpotentRadical

NilRadical

Normaliser

OrbitDimension

OrbitDistribution

ParametricDerivatives

SetIDBasis

SolutionDimension

SolvableRadical

StructureCoefficients

StructureConstants

Transporter

UpperCentralSeries

VectorSpaceSum

• 

The following Maple builtins functions are extended so that they work for a LAVF object: type, has, hastype, indets. See LAVF Object Overloaded Builtins for more detail.

Examples

withLieAlgebrasOfVectorFields:

Typesetting:-Settingsuserep=true:

Typesetting:-Suppressξx,y,ηx,y:

Example1: we first require to construct a vector field and a LHPDE object for representing the determining system for E(2).

VVectorFieldξx,y,x,ηx,y,y,space=x,y

Vξⅆⅆx+ηⅆⅆy

(1)

E2SysLHPDEdiffξx,y,y,y=0,diffηx,y,x+diffξx,y,y=0,diffηx,y,y=0,diffξx,y,x=0,dep=ξ,η

E2Sysξy,y=0,ηx+ξy=0,ηy=0,ξx=0,indep=x,y,dep=ξ,η

(2)

E2LAVFV,E2Sys

E2ξⅆⅆx+ηⅆⅆy&whereξy,y=0,ξx=0,ηx=ξy,ηy=0

(3)

E2 is a valid LAVF object and a collection of methods are available for E(2).

typeE2,LAVF

true

(4)

exportsE2,static

indets,has,hastype,type,GetVectorField,GetDeterminingSystem,ImplicitForm,SolutionDimension,IsFiniteType,IsTrivial,ParametricDerivatives,GetRanking,SetIDBasis,GetIDBasis,GetSpace,IsFlat,OrbitDistribution,OrbitDimension,InvariantCount,IsTransitive,Invariants,IsLieAlgebra,IsPerfect,DerivedAlgebra,IsSolvable,IsSoluble,DerivedSeries,SolvableRadical,SolubleRadical,Radical,IsNilpotent,Hypercentre,Hypercenter,NilRadical,Nilradical,LowerCentralSeries,UpperCentralSeries,IsAbelian,IsCommutative,Centre,Center,IsSemiSimple,IsReductive,NilpotentRadical,StructureConstants,StructureCoefficients,KillingRadical,KillingPolynomial,KillingForm,KillingOrthogonal,AdjointMatrix,AreCommuting,AreSame,AreSameSpace,Centraliser,Centralizer,Normaliser,CleanDependencies,Copy,DChange,dchange,Intersection,IsIdeal,IsInvariant,IsotropyRepresentation,IsSubspace,LAVFSolve,VectorSpaceSum,LieProduct,ProjectToSpace,Transporter,ModuleCopy,ModulePrint,ModuleApply

(5)

Basic properties of E2 can be obtained by:

XGetVectorFieldE2

Xξⅆⅆx+ηⅆⅆy

(6)

SGetDeterminingSystemE2

Sξy,y=0,ξx=0,ηx=ξy,ηy=0,indep=x,y,dep=ξ,η

(7)

Both X and S are Maple objects too, and have access to various methods too. For example,

typeS,LHPDE

true

(8)

IsRifReducedS

true

(9)

IsTotalDegreeRankingS

true

(10)

GetRankingS

ξ,η

(11)

We can check algebraic properties of E2.

IsLieAlgebraE2

true

(12)

IsAbelianE2

false

(13)

IsSolvableE2

true

(14)

Fetch structure constants of E2 & display it.

CStructureConstantsE2

DisplayStructureC,Z

00Z200Z1Z2Z10

(15)

Some properties of E2 are also represented as LAVF objects (or lists of LAVF objects).

CentreE2

ξⅆⅆx+ηⅆⅆy&whereξ=0,η=0

(16)

SolvableRadicalE2

ξⅆⅆx+ηⅆⅆy&whereξy,y=0,ξx=0,ηx=ξy,ηy=0

(17)

DerivedSeriesE2

ξⅆⅆx+ηⅆⅆy&whereξy,y=0,ξx=0,ηx=ξy,ηy=0,ξⅆⅆx+ηⅆⅆy&whereξx=0,ηx=0,ξy=0,ηy=0,ξⅆⅆx+ηⅆⅆy&whereξ=0,η=0

(18)

A LAVF object can be converted into a PDO for vector fields.

VFPDOE2

X2y2Xx,ⅆⅆxXx,xXy+yXx,ⅆⅆyXy

(19)

Solving E2 vector fields system to find vector fields.

LAVFSolveE2

c__1y+c__3ⅆⅆx+c__1x+c__2ⅆⅆy

(20)

Example2: now we consider three 3-d rotation vector fields that generating standard SO(3) action on R3(x,y,z). First we construct these vector fields.

Typesetting:-Suppressη,ξ,ζx,y,z:

R1VectorFieldxDyyDx,space=x,y,z

R1yⅆⅆx+xⅆⅆy

(21)

R2VectorFieldxDzzDx,space=x,y,z

R2zⅆⅆx+xⅆⅆz

(22)

R3VectorFieldyDzzDy,space=x,y,z

R3zⅆⅆy+yⅆⅆz

(23)

XVectorFieldξx,y,zDx+ηx,y,zDy+ζx,y,zDz,space=x,y,z

Xξⅆⅆx+ηⅆⅆy+ζⅆⅆz

(24)

Then a LAVF object as the vector fields system for SO(3) can be constructed by

SO3EliminationLAVFX,R1,R2,R3

SO3ξⅆⅆx+ηⅆⅆy+ζⅆⅆz&whereξ=ζzηyx,ηx=ζyz+ηx,ηy=0,ηz=ζy,ζy,y=0,ζx=ζyy+ζx,ζz=0

(25)

Some geometric properties of SO(3).

OrbitDimensionSO3

2

(26)

IsTransitiveSO3

false

(27)

InvariantCountSO3

1

(28)

Invariants may be found via integration.

InvariantsSO3

x2+y2+z2

(29)

We can explore the geometric properties of SO3 in further detail by extracting its orbit distribution.

ODOrbitDistributionSO3

ODyⅆⅆxx+ⅆⅆy,zⅆⅆxx+ⅆⅆz

(30)

OD is also a Maple object named Distribution, and it has access to various methods.

typeOD,Distribution

true

(31)

exportsOD,static

GetSpace,GetVectorFields,GetAnnihilator,AreSameSpace,IsTrivial,Dimension,Codimension,IsInvolutive,IsIntegrable,Integrals,IsSubspace,Intersection,VectorSpaceSum,IsInvariant,DerivedDistribution,CauchyDistribution,dchange,DChange,indets,has,hastype,type,convert

(32)

See Also

LieAlgebrasOfVectorFields (Package overview)

LAVF (Object overview)

LHPDE (Object overview)

VectorField (Object overview)

LieAlgebrasOfVectorFields[VectorField]

LieAlgebrasOfVectorFields[LHPDE]

LieAlgebrasOfVectorFields[LAVF]