Overview of the LAVF Object
Description
LAVF Object Methods
Examples
The LAVF object is designed and created to represent a Lie algebras of vector field (LAVF). An LAVF is usually of the form before solving the symmetry determining system to get solution vector fields.
There are more than 60 methods that are available for a LAVF object, types of methods including (i) basic and solution properties of a LAVF, (ii) Lie algebraic and geometrical properties of a LAVF, (iii) Lie algebraic and geometrical relationships among LAVFs, (iv) utility methods for manipulating a LAVF (or LAVFs). Some Maple existing builtins are extended for allowing LAVF object.
A valid LAVF object is automatically in a rif-reduced form with respect to a ranking that is in total degree ranking. See methods IsRifReduced, IsTotalDegreeRanking and GetRanking of a LHPDE object.
The LAVF object is allowed to be either of finite or infinite type. And the form of its determining system can be un-solved, or solved, or any forms in between (i.e. partially solved).
All methods of the LAVF object become available only once a valid LAVF object is constructed successfully. To construct a LAVF object, see LieAlgebrasOfVectorFields[LAVF].
The LAVF object is the main Maple object exported by the LieAlgebrasOfVectorFields package. See Overview of the LieAlgebrasOfVectorFields package for more detail.
A LAVF object is mathematically represented by the formal vector field as a VectorField object and the determining system as a LHPDE object. Here the components of the formal vector field must be (part of) the dependent variables of the determining system.These two data attributes can be accessed via the GetVectorField and GetDeterminingSystem methods.
After a LAVF object L is successfully constructed, each method in L can be accessed by either the short form method(L, arguments) or the long form L:-method(L, arguments).
After a LAVF object is constructed, the following methods are available:
AdjointMatrix
AreCommuting
AreSame
AreSameSpace
Centraliser
Centre
CleanDependencies
Copy
DChange
DerivedAlgebra
DerivedSeries
GetDeterminingSystem
GetIDBasis
GetSpace
GetVectorField
Hypercentre
ImplicitForm
Intersection
InvariantCount
Invariants
IsAbelian
IsCommutative
IsFiniteType
IsFlat
IsIdeal
IsInvariant
IsLieAlgebra
IsNilpotent
IsPerfect
IsReductive
IsSemiSimple
IsSolvable
IsSubspace
IsTransitive
IsTrivial
KillingForm
KillingOrthogonal
KillingPolynomial
KillingRadical
LAVFSolve
LieProduct
LowerCentralSeries
NilpotentRadical
NilRadical
Normaliser
OrbitDimension
OrbitDistribution
ParametricDerivatives
SetIDBasis
SolutionDimension
SolvableRadical
StructureCoefficients
StructureConstants
Transporter
UpperCentralSeries
VectorSpaceSum
The following Maple builtins functions are extended so that they work for a LAVF object: type, has, hastype, indets. See LAVF Object Overloaded Builtins for more detail.
with⁡LieAlgebrasOfVectorFields:
Typesetting:-Settings⁡userep=true:
Typesetting:-Suppress⁡ξ⁡x,y,η⁡x,y:
Example1: we first require to construct a vector field and a LHPDE object for representing the determining system for E(2).
V≔VectorField⁡ξ⁡x,y,x,η⁡x,y,y,space=x,y
V≔ξ⁢ⅆⅆx+η⁢ⅆⅆy
E2Sys≔LHPDE⁡diff⁡ξ⁡x,y,y,y=0,diff⁡η⁡x,y,x+diff⁡ξ⁡x,y,y=0,diff⁡η⁡x,y,y=0,diff⁡ξ⁡x,y,x=0,dep=ξ,η
E2Sys≔ξy,y=0,ηx+ξy=0,ηy=0,ξx=0,indep=x,y,dep=ξ,η
E2≔LAVF⁡V,E2Sys
E2≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξy,y=0,ξx=0,ηx=−ξy,ηy=0
E2 is a valid LAVF object and a collection of methods are available for E(2).
type⁡E2,LAVF
true
exports⁡E2,static
indets,has,hastype,type,GetVectorField,GetDeterminingSystem,ImplicitForm,SolutionDimension,IsFiniteType,IsTrivial,ParametricDerivatives,GetRanking,SetIDBasis,GetIDBasis,GetSpace,IsFlat,OrbitDistribution,OrbitDimension,InvariantCount,IsTransitive,Invariants,IsLieAlgebra,IsPerfect,DerivedAlgebra,IsSolvable,IsSoluble,DerivedSeries,SolvableRadical,SolubleRadical,Radical,IsNilpotent,Hypercentre,Hypercenter,NilRadical,Nilradical,LowerCentralSeries,UpperCentralSeries,IsAbelian,IsCommutative,Centre,Center,IsSemiSimple,IsReductive,NilpotentRadical,StructureConstants,StructureCoefficients,KillingRadical,KillingPolynomial,KillingForm,KillingOrthogonal,AdjointMatrix,AreCommuting,AreSame,AreSameSpace,Centraliser,Centralizer,Normaliser,CleanDependencies,Copy,DChange,dchange,Intersection,IsIdeal,IsInvariant,IsotropyRepresentation,IsSubspace,LAVFSolve,VectorSpaceSum,LieProduct,ProjectToSpace,Transporter,ModuleCopy,ModulePrint,ModuleApply
Basic properties of E2 can be obtained by:
X≔GetVectorField⁡E2
X≔ξ⁢ⅆⅆx+η⁢ⅆⅆy
S≔GetDeterminingSystem⁡E2
S≔ξy,y=0,ξx=0,ηx=−ξy,ηy=0,indep=x,y,dep=ξ,η
Both X and S are Maple objects too, and have access to various methods too. For example,
type⁡S,LHPDE
IsRifReduced⁡S
IsTotalDegreeRanking⁡S
GetRanking⁡S
ξ,η
We can check algebraic properties of E2.
IsLieAlgebra⁡E2
IsAbelian⁡E2
false
IsSolvable⁡E2
Fetch structure constants of E2 & display it.
C≔StructureConstants⁡E2
DisplayStructure⁡C,Z
00Z200−Z1−Z2Z10
Some properties of E2 are also represented as LAVF objects (or lists of LAVF objects).
Centre⁡E2
ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξ=0,η=0
SolvableRadical⁡E2
ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξy,y=0,ξx=0,ηx=−ξy,ηy=0
DerivedSeries⁡E2
ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξy,y=0,ξx=0,ηx=−ξy,ηy=0,ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξx=0,ηx=0,ξy=0,ηy=0,ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξ=0,η=0
A LAVF object can be converted into a PDO for vector fields.
VFPDO⁡E2
X↦∂2∂y2X⁡x,ⅆⅆxX⁡x,∂∂xX⁡y+∂∂yX⁡x,ⅆⅆyX⁡y
Solving E2 vector fields system to find vector fields.
LAVFSolve⁡E2
−c__1⁢y+c__3⁢ⅆⅆx+c__1⁢x+c__2⁢ⅆⅆy
Example2: now we consider three 3-d rotation vector fields that generating standard SO(3) action on R3(x,y,z). First we construct these vector fields.
Typesetting:-Suppress⁡η,ξ,ζ⁡x,y,z:
R1≔VectorField⁡x⁢Dy−y⁢Dx,space=x,y,z
R1≔−y⁢ⅆⅆx+x⁢ⅆⅆy
R2≔VectorField⁡x⁢Dz−z⁢Dx,space=x,y,z
R2≔−z⁢ⅆⅆx+x⁢ⅆⅆz
R3≔VectorField⁡y⁢Dz−z⁢Dy,space=x,y,z
R3≔−z⁢ⅆⅆy+y⁢ⅆⅆz
X≔VectorField⁡ξ⁡x,y,z⁢Dx+η⁡x,y,z⁢Dy+ζ⁡x,y,z⁢Dz,space=x,y,z
X≔ξ⁢ⅆⅆx+η⁢ⅆⅆy+ζ⁢ⅆⅆz
Then a LAVF object as the vector fields system for SO(3) can be constructed by
SO3≔EliminationLAVF⁡X,R1,R2,R3
SO3≔ξ⁢ⅆⅆx+η⁢ⅆⅆy+ζ⁢ⅆⅆz&whereξ=−ζ⁢z−η⁢yx,ηx=ζy⁢z+ηx,ηy=0,ηz=−ζy,ζy,y=0,ζx=−ζy⁢y+ζx,ζz=0
Some geometric properties of SO(3).
OrbitDimension⁡SO3
2
IsTransitive⁡SO3
InvariantCount⁡SO3
1
Invariants may be found via integration.
Invariants⁡SO3
x2+y2+z2
We can explore the geometric properties of SO3 in further detail by extracting its orbit distribution.
OD≔OrbitDistribution⁡SO3
OD≔−y⁢ⅆⅆxx+ⅆⅆy,−z⁢ⅆⅆxx+ⅆⅆz
OD is also a Maple object named Distribution, and it has access to various methods.
type⁡OD,Distribution
exports⁡OD,static
GetSpace,GetVectorFields,GetAnnihilator,AreSameSpace,IsTrivial,Dimension,Codimension,IsInvolutive,IsIntegrable,Integrals,IsSubspace,Intersection,VectorSpaceSum,IsInvariant,DerivedDistribution,CauchyDistribution,dchange,DChange,indets,has,hastype,type,convert
See Also
LieAlgebrasOfVectorFields (Package overview)
LAVF (Object overview)
LHPDE (Object overview)
VectorField (Object overview)
LieAlgebrasOfVectorFields[VectorField]
LieAlgebrasOfVectorFields[LHPDE]
LieAlgebrasOfVectorFields[LAVF]
Download Help Document