AreCommuting
check if one LAVF commutes with another
Calling Sequence
Parameters
Description
Examples
Compatibility
AreCommuting(L, M)
AreCommuting(L, M, N)
L, M, N
-
LAVF objects.
Let L, M, N be LAVF objects on the same space with same local coordinates. Then AreCommuting(L, M) checks if L commutes with M, i.e. if L,M=0.
Similarly, the three arguments call AreCommuting(L, M, N) checks if L commutes with M mod N, i.e. if L,M is in N.
This method is symmetric in the first two input arguments, that is, AreCommuting(L,M, N) is same as AreCommuting(M,L,N).
Some Lie algebraic methods (IsLieAlgebra, IsAbelian, and IsIdeal) are front-ends to AreCommuting.
This method is associated with the LAVF object. For more detail, see Overview of the LAVF object.
with⁡LieAlgebrasOfVectorFields:
Typesetting:-Settings⁡userep=true:
Typesetting:-Suppress⁡ξ⁡x,y,η⁡x,y:
V≔VectorField⁡ξ⁡x,y⁢Dx+η⁡x,y⁢Dy,space=x,y
V≔ξ⁢ⅆⅆx+η⁢ⅆⅆy
E2≔LHPDE⁡diff⁡ξ⁡x,y,y,y=0,diff⁡η⁡x,y,x=−diff⁡ξ⁡x,y,y,diff⁡η⁡x,y,y=0,diff⁡ξ⁡x,y,x=0,indep=x,y,dep=ξ,η
E2≔ξy,y=0,ηx=−ξy,ηy=0,ξx=0,indep=x,y,dep=ξ,η
Construct a LAVF for E(2).
L≔LAVF⁡V,E2
L≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξy,y=0,ξx=0,ηx=−ξy,ηy=0
We can check if L is closed under commutator ...
AreCommuting⁡L,L,L
true
or by using a more direct call.
IsLieAlgebra⁡L
We can also check if L is abelian...
AreCommuting⁡L,L
false
IsAbelian⁡L
As we know the centre of L must be abelian,
AreCommuting⁡Centre⁡L,Centre⁡L
The AreCommuting command was introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
LieAlgebrasOfVectorFields (Package overview)
LAVF (Object overview)
LieAlgebrasOfVectorFields[VectorField]
LieAlgebrasOfVectorFields[LHPDE]
LieAlgebrasOfVectorFields[LAVF]
IsLieAlgebra
IsAbelian
IsIdeal
Download Help Document