Centraliser
calculate the centraliser of one LAVF object in another.
Normaliser
calculate the normaliser of one LAVF object in another.
Calling Sequence
Parameters
Description
Examples
Compatibility
Centraliser( M, L)
Normaliser( L, U)
M, L
-
LAVF objects where M⊆L (see IsSubspace for more detail)
U
(optional) a LAVF object where L⊆U
Let M, L be LAVF objects which are Lie algebras (see IsLieAlgebra) and M⊆L . Then Centraliser(M, L) computes the centraliser of M in L, namely x∈L|x,M=0, as a new LAVF object.
Centraliser(M, L) is equivalent to Transporter(L, M, T) where T is a trivial LAVF (i.e. its determining system has trivial solutions) associated with vector fields of L. See the method Transporter for more detail.
The name Centralizer is provided as alias.
Similarly, let L, U be LAVF objects that are Lie algebras and L⊆U. Then Normaliser(L,U) computes the normaliser of L in U, namely x∈U|x,L∈L , as a new LAVF object.
The second input argument U defaults to a universal LAVF associated with vector fields of L. That is, Normaliser(L) is equivalent to Normaliser(L, U) where U := LAVF(GetVectorField(L), "universal").
The call Normaliser(L,U) is equivalent to Transporter(U, L, L).
These methods are associated with the LAVF object. For more detail, see Overview of the LAVF object.
with⁡LieAlgebrasOfVectorFields:
Typesetting:-Settings⁡userep=true:
Typesetting:-Suppress⁡ξ⁡x,y,η⁡x,y:
V≔VectorField⁡ξ⁡x,y⁢Dx+η⁡x,y⁢Dy,space=x,y
V≔ξ⁢ⅆⅆx+η⁢ⅆⅆy
Example 1:
T2≔LHPDE⁡diff⁡ξ⁡x,y,x=0,diff⁡ξ⁡x,y,y=0,diff⁡η⁡x,y,x=0,diff⁡η⁡x,y,y=0,indep=x,y,dep=ξ,η
T2≔ξx=0,ξy=0,ηx=0,ηy=0,indep=x,y,dep=ξ,η
E2≔LHPDE⁡diff⁡ξ⁡x,y,y,y=0,diff⁡η⁡x,y,x=−diff⁡ξ⁡x,y,y,diff⁡η⁡x,y,y=0,diff⁡ξ⁡x,y,x=0,indep=x,y,dep=ξ,η
E2≔ξy,y=0,ηx=−ξy,ηy=0,ξx=0,indep=x,y,dep=ξ,η
We first construct two LAVF objects
LT2≔LAVF⁡V,T2
LT2≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξx=0,ηx=0,ξy=0,ηy=0
LE2≔LAVF⁡V,E2
LE2≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξy,y=0,ξx=0,ηx=−ξy,ηy=0
Both LAVFs are Lie algebras and L is indeed a subalgebra of LE2
IsLieAlgebra⁡LT2
true
IsLieAlgebra⁡LE2
2-dim translation group is subspace of 2-dim Euclidean group
IsSubspace⁡LT2,LE2
The centraliser of translations in E(2) is the translations themselves...
Centraliser⁡LT2,LE2
ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξx=0,ηx=0,ξy=0,ηy=0
Normaliser of translations in E(2) is E(2)
Normaliser⁡LT2,LE2
ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξy,y=0,ξx=0,ηx=−ξy,ηy=0
Normaliser of E(2) in 'Lie algebra' of all vector fields is 4-dim, and includes E(2) as well as the uniform scalings...
N2≔Normaliser⁡LE2
N2≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξy,y=0,ηy,y=0,ξx=ηy,ηx=−ξy
SolutionDimension⁡N2
4
Example 2:
S≔LHPDE⁡diff⁡ξ⁡x,y,x,x=0,diff⁡ξ⁡x,y,y=0,η⁡x,y=0,indep=x,y,dep=ξ,η
S≔ξx,x=0,ξy=0,η=0,indep=x,y,dep=ξ,η
L is an affine group on the line (i.e. acts on x only)...
L≔LAVF⁡V,S
L≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξx,x=0,ξy=0,η=0
IsLieAlgebra⁡L
SolutionDimension⁡L
2
Normaliser of L in Lie algebra of all vector fields is an infinite Lie pseudogroup
N≔Normaliser⁡L
N≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξx,x=0,ηx=0,ξy=0
SolutionDimension⁡N
∞
The Centraliser and Normaliser commands were introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
LieAlgebrasOfVectorFields (Package overview)
LAVF (Object overview)
LieAlgebrasOfVectorFields[VectorField]
LieAlgebrasOfVectorFields[LHPDE]
LieAlgebrasOfVectorFields[LAVF]
IsLieAlgebra
IsSubspace
Transporter
Download Help Document