Invariants
attempt to find invariants of a LAVF object.
Calling Sequence
Parameters
Description
Examples
Compatibility
Invariants( obj)
obj
-
a LAVF object.
The Invariants method attempts to find the invariants of a LAVF object via integration. If successful, it returns the invariants as a list of expressions.
Let L be a LAVF object and OD be the orbit distribution of L. Then Invariants(L) is equivalent to Integrals(OD). For more detail of the Distribution's methods, see Overview of the Distribution object.
This method is associated with the LAVF object. For more detail, see Overview of the LAVF object.
with⁡LieAlgebrasOfVectorFields:
Typesetting:-Settings⁡userep=true:
Typesetting:-Suppress⁡ξ⁡x,y,z,η⁡x,y,z,ζ⁡x,y,z:
Build vector fields associated with 3-d spatial rotations...
Rx≔VectorField⁡−z⁢Dy+y⁢Dz,space=x,y,z
Rx≔−z⁢ⅆⅆy+y⁢ⅆⅆz
Ry≔VectorField⁡−x⁢Dz+z⁢Dx,space=x,y,z
Ry≔z⁢ⅆⅆx−x⁢ⅆⅆz
Rz≔VectorField⁡−y⁢Dx+x⁢Dy,space=x,y,z
Rz≔−y⁢ⅆⅆx+x⁢ⅆⅆy
We now construct a vector fields system (as a LAVF object) for SO(3) that are generated by these rotation vector fields.
V≔VectorField⁡ξ⁡x,y,z⁢Dx+η⁡x,y,z⁢Dy+ζ⁡x,y,z⁢Dz,space=x,y,z
V≔ξ⁢ⅆⅆx+η⁢ⅆⅆy+ζ⁢ⅆⅆz
L≔EliminationLAVF⁡V,Rx,Ry,Rz
L≔ξ⁢ⅆⅆx+η⁢ⅆⅆy+ζ⁢ⅆⅆz&whereξ=−η⁢y−ζ⁢zx,ηx=ζy⁢z+ηx,ηy=0,ηz=−ζy,ζy,y=0,ζx=−ζy⁢y+ζx,ζz=0
Invariants⁡L
x2+y2+z2
The Invariants command was introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
LieAlgebrasOfVectorFields (Package overview)
LAVF (Object overview)
Distribution (Object overview)
LieAlgebrasOfVectorFields[VectorField]
LieAlgebrasOfVectorFields[EliminationLAVF]
Integrals
Download Help Document