Center
calculate the center of a LAVF object.
IsAbelian
check if a LAVF is abelian (commutative)
IsCommutative
a synonym for IsAbelian
Calling Sequence
Parameters
Description
Examples
Compatibility
Center( obj)
IsAbelian( obj)
IsCommutative( obj)
obj
-
a LAVF object that is a Lie algebra i.e.IsLieAlgebra(obj) returns true, see IsLieAlgebra.
Let L be a LAVF object which is a Lie algebra. Then the Center method returns the center of L (i.e. the elements in L that commute with all of L), as a LAVF object.
The name Centre is provided as an alias.
Let L be a LAVF object which is a Lie algebra. Then IsAbelian(L) returns true if Center(L) = L. False otherwise.
The name IsCommutative is provided an alias.
These methods are associated with the LAVF object. For more detail, see Overview of the LAVF object.
with⁡LieAlgebrasOfVectorFields:
Typesetting:-Settings⁡userep=true:
Typesetting:-Suppress⁡ξ⁡x,y,η⁡x,y:
V≔VectorField⁡ξ⁡x,y⁢Dx+η⁡x,y⁢Dy,space=x,y
V≔ξ⁢ⅆⅆx+η⁢ⅆⅆy
E2≔LHPDE⁡diff⁡ξ⁡x,y,y,y=0,diff⁡η⁡x,y,x=−diff⁡ξ⁡x,y,y,diff⁡η⁡x,y,y=0,diff⁡ξ⁡x,y,x=0,indep=x,y,dep=ξ,η
E2≔ξy,y=0,ηx=−ξy,ηy=0,ξx=0,indep=x,y,dep=ξ,η
Construct a LAVF for E(2).
L≔LAVF⁡V,E2
L≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξy,y=0,ξx=0,ηx=−ξy,ηy=0
IsLieAlgebra⁡L
true
Ctr≔Center⁡L
Ctr≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξ=0,η=0
L and its centre are not the same, therefore L is not abelian.
AreSame⁡L,Ctr
false
IsAbelian⁡L
IsCommutative⁡L
The Center, IsAbelian and IsCommutative commands were introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
LieAlgebrasOfVectorFields (Package overview)
LAVF (Object overview)
LieAlgebrasOfVectorFields[VectorField]
LieAlgebrasOfVectorFields[LHPDE]
LieAlgebrasOfVectorFields[LAVF]
IsLieAlgebra
AreSame
Download Help Document