IsInvariant - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


IsInvariant

check if one LAVF is invariant under action of another LAVF

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

IsInvariant( L1, L2)

Parameters

L1, L2

-

LAVF objects.

Description

• 

Let L1, L2 be LAVF objects on the same space. Then IsInvariant(L1,L2) checks if L1 is invariant under action of L2 (i.e. if L1,L2L1).

• 

The call IsInvariant(L1, L2) is equivalent to the call AreCommuting(L1,L2,L1). See AreCommuting for more detail.

• 

This method is associated with the LAVF object. For more detail, see Overview of the LAVF object.

Examples

withLieAlgebrasOfVectorFields:

Typesetting:-Settingsuserep=true:

Typesetting:-Suppressξx,y,ηx,y:

VVectorFieldξx,yDx+ηx,yDy,space=x,y

Vξⅆⅆx+ηⅆⅆy

(1)

T2LHPDEdiffξx,y,x=0,diffξx,y,y=0,diffηx,y,x=0,diffηx,y,y=0,indep=x,y,dep=ξ,η

T2ξx=0,ξy=0,ηx=0,ηy=0,indep=x,y,dep=ξ,η

(2)

E2LHPDEdiffξx,y,y,y=0,diffηx,y,x=diffξx,y,y,diffηx,y,y=0,diffξx,y,x=0,indep=x,y,dep=ξ,η

E2ξy,y=0,ηx=ξy,ηy=0,ξx=0,indep=x,y,dep=ξ,η

(3)

Construct LAVFs for 2-dim Euclidean group E(2) and 2-dim translation group T(2).

LE2LAVFV,E2

LE2ξⅆⅆx+ηⅆⅆy&whereξy,y=0,ξx=0,ηx=ξy,ηy=0

(4)

LT2LAVFV,T2

LT2ξⅆⅆx+ηⅆⅆy&whereξx=0,ηx=0,ξy=0,ηy=0

(5)

Both LAVFs are Lie algebras.

IsLieAlgebraLE2

true

(6)

IsLieAlgebraLT2

true

(7)

LT2 is invariant under the action of LE2.

IsInvariantLT2,LE2

true

(8)

Compatibility

• 

The IsInvariant command was introduced in Maple 2020.

• 

For more information on Maple 2020 changes, see Updates in Maple 2020.

See Also

LieAlgebrasOfVectorFields (Package overview)

LAVF (Object overview)

LieAlgebrasOfVectorFields[VectorField]

LieAlgebrasOfVectorFields[LHPDE]

LieAlgebrasOfVectorFields[LAVF]

IsLieAlgebra