NilpotentRadical
calculate the nilpotent radical of a LAVF object.
IsReductive
check if a LAVF is reductive.
Calling Sequence
Parameters
Description
Examples
Compatibility
NilpotentRadical( obj)
IsReductive( obj)
obj
-
a LAVF object that is a Lie algebra i.e.IsLieAlgebra(obj) returns true, see IsLieAlgebra.
Let L be a LAVF object which is a Lie algebra. Then NilpotentRadical method returns the nilpotent radical of L, as a LAVF object.
By mathematical definition, the nilpotent radical of L is the intersection of the solvable radical of L and the derived algebra of L. Note that this is not the same thing as the nilradical.
Let NPR be the nilpotent radical of a LAVF object L. Then IsReductive(L) returns true if and only if L is reductive i.e. iff NPR is trivial (i.e. IsTrivial(NPR) returns true).
These methods are associated with the LAVF object. For more detail, see Overview of the LAVF object.
with⁡LieAlgebrasOfVectorFields:
Typesetting:-Settings⁡userep=true:
Typesetting:-Suppress⁡ξ⁡x,y,η⁡x,y:
V≔VectorField⁡ξ⁡x,y⁢Dx+η⁡x,y⁢Dy,space=x,y
V≔ξ⁢ⅆⅆx+η⁢ⅆⅆy
E2≔LHPDE⁡diff⁡ξ⁡x,y,y,y=0,diff⁡η⁡x,y,x=−diff⁡ξ⁡x,y,y,diff⁡η⁡x,y,y=0,diff⁡ξ⁡x,y,x=0,indep=x,y,dep=ξ,η
E2≔ξy,y=0,ηx=−ξy,ηy=0,ξx=0,indep=x,y,dep=ξ,η
Construct a LAVF for the Euclidean Lie algebra E(2).
L≔LAVF⁡V,E2
L≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξy,y=0,ξx=0,ηx=−ξy,ηy=0
IsLieAlgebra⁡L
true
NPR≔NilpotentRadical⁡L
NPR≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξx=0,ηx=0,ξy=0,ηy=0
The nilpotent radical is not trivial, therefore L is not reductive.
IsReductive⁡L
false
The NilpotentRadical and IsReductive commands were introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
LieAlgebrasOfVectorFields (Package overview)
LAVF (Object overview)
LieAlgebrasOfVectorFields[VectorField]
LieAlgebrasOfVectorFields[LHPDE]
LieAlgebrasOfVectorFields[LAVF]
IsLieAlgebra
IsTrivial
Download Help Document