KillingForm
calculate the Killing form of a LAVF object.
Calling Sequence
Parameters
Description
Examples
Compatibility
KillingForm( obj)
obj
-
a LAVF object that is a Lie algebra i.e. IsLieAlgebra(obj) returns true, see IsLieAlgebra.
Let L be a LAVF object which is a Lie algebra. Then KillingForm method returns the Killing form of L, as a KF Maple object.
The returned KF object is for representing the Killing form. A valid KF object can act as a symmetric bilinear operator (form) and has access to some methods. See Overview of the KF object for more detail.
This method is associated with the LAVF object. For more detail, see Overview of the LAVF object.
with⁡LieAlgebrasOfVectorFields:
Typesetting:-Settings⁡userep=true:
Typesetting:-Suppress⁡ξ⁡x,y,η⁡x,y:
V≔VectorField⁡ξ⁡x,y⁢Dx+η⁡x,y⁢Dy,space=x,y
V≔ξ⁢ⅆⅆx+η⁢ⅆⅆy
E2≔LHPDE⁡diff⁡ξ⁡x,y,y,y=0,diff⁡η⁡x,y,x=−diff⁡ξ⁡x,y,y,diff⁡η⁡x,y,y=0,diff⁡ξ⁡x,y,x=0,indep=x,y,dep=ξ,η
E2≔ξy,y=0,ηx=−ξy,ηy=0,ξx=0,indep=x,y,dep=ξ,η
Construct a LAVF for the Euclidean Lie algebra E(2).
L≔LAVF⁡V,E2
L≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξy,y=0,ξx=0,ηx=−ξy,ηy=0
IsLieAlgebra⁡L
true
K≔KillingForm⁡L
K≔X,Y↦−2⋅∂∂yX⁡x⋅∂∂yY⁡x
To exercise the Killing form K, we introduce the following two vector fields on the same space as L
X≔VectorField⁡ξ⁡x,y⁢Dx+η⁡x,y⁢Dy,space=x,y
X≔ξ⁢ⅆⅆx+η⁢ⅆⅆy
Y≔VectorField⁡α⁡x,y⁢Dx+β⁡x,y⁢Dy,space=x,y
Y≔α⁡x,y⁢ⅆⅆx+β⁡x,y⁢ⅆⅆy
...and evaluate the Killing form...
K⁡X,Y
−2⁢ξy⁢∂∂yα⁡x,y
The KillingForm command was introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
LieAlgebrasOfVectorFields (Package overview)
LAVF (Object overview)
LieAlgebrasOfVectorFields[VectorField]
LieAlgebrasOfVectorFields[LHPDE]
LieAlgebrasOfVectorFields[LAVF]
IsLieAlgebra
KF (Object overview)
Download Help Document