LieProduct
find an LAVF object for the Lie product of the spaces defined by two LAVF objects
Calling Sequence
Parameters
Description
Examples
Compatibility
LieProduct(L, M, N)
L, M, N
-
LAVF objects living on the same space and L, M commute mod N
Let L, M, N be LAVF objects on the same space, and L commutes with M mod N (i.e. AreCommuting(L,M,N) returns true. See AreCommuting). Then LieProduct(L, M, N) finds an LAVF object for the Lie product L,M of the spaces defined by L, M.
The method only works where all spaces are finite dimensional.
Some Lie algebraic structural methods (DerivedAlgebra, DerivedSeries, and LowerCentralSeries) are front-ends to LieProduct.
This method is associated with the LAVF object. For more detail, see Overview of the LAVF object.
with⁡LieAlgebrasOfVectorFields:
Typesetting:-Settings⁡userep=true:
Typesetting:-Suppress⁡ξ⁡x,y,η⁡x,y:
V≔VectorField⁡ξ⁡x,y⁢Dx+η⁡x,y⁢Dy,space=x,y
V≔ξ⁢ⅆⅆx+η⁢ⅆⅆy
E2≔LHPDE⁡diff⁡ξ⁡x,y,y,y=0,diff⁡η⁡x,y,x=−diff⁡ξ⁡x,y,y,diff⁡η⁡x,y,y=0,diff⁡ξ⁡x,y,x=0,indep=x,y,dep=ξ,η
E2≔ξy,y=0,ηx=−ξy,ηy=0,ξx=0,indep=x,y,dep=ξ,η
T2≔LHPDE⁡diff⁡ξ⁡x,y,x=0,diff⁡ξ⁡x,y,y=0,diff⁡η⁡x,y,x=0,diff⁡η⁡x,y,y=0,indep=x,y,dep=ξ,η
T2≔ξx=0,ξy=0,ηx=0,ηy=0,indep=x,y,dep=ξ,η
Construct a LAVF for the 2-dim Euclidean group E(2) and the 2-dim translation group T(2)
L≔LAVF⁡V,E2
L≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξy,y=0,ξx=0,ηx=−ξy,ηy=0
LT2≔LAVF⁡V,T2
LT2≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξx=0,ηx=0,ξy=0,ηy=0
IsLieAlgebra⁡L
true
IsLieAlgebra⁡LT2
LieProduct⁡L,L,L
newAbsL,absLAVF6
ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξx=0,ηx=0,ξy=0,ηy=0
The above call is equivalent to finding the derived algebra of L. which is 2-dim translation group.
DA≔DerivedAlgebra⁡L
DA≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξx=0,ηx=0,ξy=0,ηy=0
AreSame⁡DA,LT2
LieProduct⁡LT2,LT2,L
newAbsL,absLAVF11
ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξ=0,η=0
The LieProduct command was introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
LieAlgebrasOfVectorFields (Package overview)
LAVF (Object overview)
LieAlgebrasOfVectorFields[VectorField]
LieAlgebrasOfVectorFields[LHPDE]
LieAlgebrasOfVectorFields[LAVF]
AreCommuting
IsLieAlgebra
DerivedAlgebra
DerivedSeries
LowerCentralSeries
Download Help Document