OrbitDimension
calculate the dimension of the orbit distribution of a LAVF object
InvariantCount
calculate the count of invariant of a LAVF object
IsTransitive
check if a LAVF object is transitive.
Calling Sequence
Parameters
Description
Examples
Compatibility
OrbitDimension( obj)
InvariantCount( obj, t)
IsTransitive( obj)
obj
-
a LAVF object
t
(optional) a string: "all", "essential", or "inessential"
The OrbitDimension method calculates the dimension of the orbit distribution of a LAVF object.
The InvariantCount method calculates the count of scalar invariants of a LAVF object. By default (t="all"), all invariants are counted.
If t="essential" is specified, then only essential invariants are counted. An invariant is essential, roughly speaking, if the group action cannot be expressed without it.
Let L be a LAVF object. Then IsTransitive(L) returns true if and only if the action of L is transitive, that is, InvariantCount(L) = 0.
Let L be a LAVF object and let OD be the orbit distribution of L. Then OrbitDimension(L) equals to Dimension(OD) and InvariantCount(L) equals to Codimension(OD). See Overview of the Distribution object for more detail.
These methods are associated with the LAVF object. For more detail, see Overview of the LAVF object.
with⁡LieAlgebrasOfVectorFields:
Typesetting:-Settings⁡userep=true:
Typesetting:-Suppress⁡ξ⁡x,y,z,η⁡x,y,z,ζ⁡x,y,z:
Example 1: Build vector fields associated with 3-d spatial rotations...
Rx≔VectorField⁡−z⁢Dy+y⁢Dz,space=x,y,z
Rx≔−z⁢ⅆⅆy+y⁢ⅆⅆz
Ry≔VectorField⁡−x⁢Dz+z⁢Dx,space=x,y,z
Ry≔z⁢ⅆⅆx−x⁢ⅆⅆz
Rz≔VectorField⁡−y⁢Dx+x⁢Dy,space=x,y,z
Rz≔−y⁢ⅆⅆx+x⁢ⅆⅆy
We now construct a LAVF object for SO(3) that are generated by these rotation vector fields.
V≔VectorField⁡ξ⁡x,y,z⁢Dx+η⁡x,y,z⁢Dy+ζ⁡x,y,z⁢Dz,space=x,y,z
V≔ξ⁢ⅆⅆx+η⁢ⅆⅆy+ζ⁢ⅆⅆz
L≔EliminationLAVF⁡V,Rx,Ry,Rz
L≔ξ⁢ⅆⅆx+η⁢ⅆⅆy+ζ⁢ⅆⅆz&whereξ=−η⁢y−ζ⁢zx,ηx=ζy⁢z+ηx,ηy=0,ηz=−ζy,ζy,y=0,ζx=−ζy⁢y+ζx,ζz=0
OrbitDimension⁡L
2
InvariantCount⁡L
1
L is not transitive since SO(3) has one invariant.
IsTransitive⁡L
false
Invariants⁡L
x2+y2+z2
Example 2:
Y≔VectorField⁡a⁢y⁢Dx+b⁢z⁢Dx,space=x,y,z
Y≔a⁢y+b⁢z⁢ⅆⅆx
L2≔EliminationLAVF⁡V,Y,coefficients=a,b
L2≔ξ⁢ⅆⅆx+η⁢ⅆⅆy+ζ⁢ⅆⅆz&whereξz,z=0,ξx=0,ξy=−ξz⁢z+ξy,η=0,ζ=0
OrbitDimension⁡L2
IsTransitive⁡L2
InvariantCount⁡L2
InvariantCount⁡L2,essential
InvariantCount⁡L2,inessential
The counts above are found directly from L2. Finding invariants involve integration...
Invariants⁡L2
y,z
Invariants⁡L2,essential
zy
The OrbitDimension, InvariantCount and IsTransitive commands were introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
LieAlgebrasOfVectorFields (Package overview)
LAVF (Object overview)
Distribution (Object overview)
LieAlgebrasOfVectorFields[VectorField]
LieAlgebrasOfVectorFields[EliminationLAVF]
Invariants
Download Help Document