SolutionDimension
calculate the solution dimension for a LAVF object.
IsFiniteType
check if a LAVF object is of finite type
IsTrivial
check if a LAVF object has only the trivial solution
Calling Sequence
Parameters
Description
Examples
Compatibility
SolutionDimension( obj)
IsFiniteType( obj)
IsTrivial( obj)
obj
-
a LAVF object
The SolutionDimension method calculates the solution dimension of the determining system for a LAVF object. It returns ∞ if the solution dimension is not finite.
Let L be a LAVF object. Then IsFiniteType(L) returns true if and only if SolutionDimension(L) < ∞.
Let L be a LAVF object. Then IsTrivial(L) returns true if and only if SolutionDimension(L) = 0.
These methods are front-end to the corresponding methods of a LHPDE object. That is, let L be a LAVF object and S be its determining system (i.e. S = GetDeterminingSystem(L)), then SolutionDimension(L) equals SolutionDimension(S), IsFiniteType(L) equals IsFiniteType(S) and IsTrivial(L) equals IsTrivial(S). For more detail, see the corresponding methods: SolutionDimension, IsFiniteType, IsTrivial of a LHPDE object.
These methods are associated with the LAVF object. For more detail, see Overview of the LAVF object.
with⁡LieAlgebrasOfVectorFields:
Typesetting:-Settings⁡userep=true:
Typesetting:-Suppress⁡ξ⁡x,y,η⁡x,y:
First, construct an indeterminate vector field and a determining system, then construct an LAVF object from them...
V≔VectorField⁡ξ⁡x,y⁢Dx+η⁡x,y⁢Dy,space=x,y
V≔ξ⁢ⅆⅆx+η⁢ⅆⅆy
E2≔LHPDE⁡diff⁡ξ⁡x,y,y,y=0,diff⁡η⁡x,y,x=−diff⁡ξ⁡x,y,y,diff⁡η⁡x,y,y=0,diff⁡ξ⁡x,y,x=0,indep=x,y,dep=ξ,η
E2≔ξy,y=0,ηx=−ξy,ηy=0,ξx=0,indep=x,y,dep=ξ,η
L≔LAVF⁡V,E2
L≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξy,y=0,ξx=0,ηx=−ξy,ηy=0
Now we can apply the methods to see properties of L.
SolutionDimension⁡L
3
The determining system of L is of finite type but not trivial:
IsFiniteType⁡L
true
IsTrivial⁡L
false
The SolutionDimension, IsFiniteType and IsTrivial commands were introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
LAVF (Object overview)
LieAlgebrasOfVectorFields[VectorField]
LieAlgebrasOfVectorFields[LHPDE]
LieAlgebrasOfVectorFields[LAVF]
Download Help Document