Transporter
find the transporter of a LAVF to another LAVF in the third LAVF
Calling Sequence
Parameters
Description
Examples
Compatibility
Transporter(L, M, N)
L, M, N
-
LAVF objects live on same space.
Let L, M, N be LAVF objects living on the same space. Then Transporter(L,M,N) finds the transporter of M to N in L, as a new LAVF object.
By definition, the transporter of M to N in Lconsists of the vector fields in L that map vector fields in M to vector fields in N, under commutator. That is, it is the subspace XL∈L|XL,XM∈N,∀XM∈M where L,M,N are subspaces of some Lie algebra.
Some Lie algebraic structural methods (Center, Centraliser, Normaliser, and UpperCentralSeries) are front-ends to Transporter.
This method is associated with the LAVF object. For more detail, see Overview of the LAVF object.
with⁡LieAlgebrasOfVectorFields:
Typesetting:-Settings⁡userep=true:
Typesetting:-Suppress⁡ξ⁡x,y,η⁡x,y:
V≔VectorField⁡ξ⁡x,y⁢Dx+η⁡x,y⁢Dy,space=x,y
V≔ξ⁢ⅆⅆx+η⁢ⅆⅆy
S≔LHPDE⁡diff⁡ξ⁡x,y,x=0,diff⁡ξ⁡x,y,y=0,diff⁡η⁡x,y,x,x=0,diff⁡η⁡x,y,y=0,indep=x,y,dep=ξ,η
S≔ξx=0,ξy=0,ηx,x=0,ηy=0,indep=x,y,dep=ξ,η
S1≔LHPDE⁡diff⁡ξ⁡x,y,x=0,diff⁡ξ⁡x,y,y=0,η⁡x,y=0,indep=x,y,dep=ξ,η
S1≔ξx=0,ξy=0,η=0,indep=x,y,dep=ξ,η
S2≔LHPDE⁡ξ⁡x,y=0,diff⁡η⁡x,y,x=η⁡x,yx,diff⁡η⁡x,y,y=0,indep=x,y,dep=ξ,η
S2≔ξ=0,ηx=ηx,ηy=0,indep=x,y,dep=ξ,η
Constructing some LAVFs,
L≔LAVF⁡V,S
L≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereηx,x=0,ξx=0,ξy=0,ηy=0
L1≔LAVF⁡V,S1
L1≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξx=0,ξy=0,η=0
L2≔LAVF⁡V,S2
L2≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereηx=ηx,ηy=0,ξ=0
L0≔LAVF⁡V,trivial
L0≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξ=0,η=0
Transporter⁡L,L2,L1
ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereηx,x=0,ηy=0,ξ=0
This is centre of L
Transporter⁡L,L,L0
ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereηx=0,ηy=0,ξ=0
and the second centre of L
Transporter⁡L,L,Centre⁡L
ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereηx,x=0,ξx=0,ξy=0,ηy=0
The upper central series of L is a sequences of L consisting a trivial LAVF, centre of L, and the second centre of L.
UpperCentralSeries⁡L
ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξ=0,η=0,ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereηx=0,ηy=0,ξ=0,ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereηx,x=0,ξx=0,ξy=0,ηy=0
The Transporter command was introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
LieAlgebrasOfVectorFields (Package overview)
LAVF (Object overview)
LieAlgebrasOfVectorFields[VectorField]
LieAlgebrasOfVectorFields[LHPDE]
LieAlgebrasOfVectorFields[LAVF]
IsLieAlgebra
Center
Centraliser
Normaliser
UpperCentralSeries
Download Help Document