LinearAlgebra
VandermondeMatrix
construct a Vandermonde Matrix
Calling Sequence
Parameters
Description
Examples
VandermondeMatrix(V, r, c, cpt, options)
V
-
name, Vector or list of algebraic values
r
(optional) non-negative integer; row dimension of the resulting Matrix
c
(optional) non-negative integer; column dimension of the resulting Matrix
cpt
(optional) equation of the form compact=true or false; selects the compact form of the output
options
(optional); constructor options for the result object
The VandermondeMatrix(V) function returns the Vandermonde Matrix corresponding to the values in V.
If M := VandermondeMatrix(V), then M is a Matrix with entries Mi,j=Vij−1. The determinant of this Matrix is the Vandermonde determinant.
The row and column dimension of the resulting Matrix are optional in the calling sequence. If these parameters are omitted, the size of the constructed Matrix is equal to the number of elements in V.
If the compact option (cpt) is included in the calling sequence as just the symbol compact or in the form compact=true, then the result is built by using a shape function designed to minimize storage. If the option is omitted or entered as compact=false, a full rectangular Matrix is constructed. Generally, if space is not a consideration, the full rectangular form (the default) is more efficient.
Note: If the compact form is selected, any datatype specification in the constructor options is silently ignored. The datatype of any data retrieved from the constructed Matrix is determined by the data used to build the Matrix.
The constructor options provide additional information (readonly, shape, storage, order, datatype, and attributes) to the Matrix constructor that builds the result. These options may also be provided in the form outputoptions=[...], where [...] represents a Maple list. If a constructor option is provided in both the calling sequence directly and in an outputoptions option, the latter takes precedence (regardless of the order).
This function is part of the LinearAlgebra package, and so it can be used in the form VandermondeMatrix(..) only after executing the command with(LinearAlgebra). However, it can always be accessed through the long form of the command by using LinearAlgebra[VandermondeMatrix](..).
with⁡LinearAlgebra:
V≔a,b,c,d
V≔abcd
VandermondeMatrix⁡V
1aa2a31bb2b31cc2c31dd2d3
VandermondeMatrix⁡1,2,3,4,5,4,3
1111241391416
VandermondeMatrix⁡v,3
1v1v121v2v221v3v32
See Also
Matrix
Vector
Download Help Document