Linsolve - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Linsolve

inert matrix solve

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

Linsolve(A, b) mod n

Linsolve(A, b, 'r', 't') mod n

Parameters

A

-

rectangular Matrix

b

-

Vector

'r'

-

(optional) name

't'

-

(optional) name

n

-

an integer, the modulus

Description

• 

The Linsolve function is a placeholder for representing the solution x to the linear system Ax=b.

• 

The call Linsolve(A,b) mod n computes the solution vector b if it exists of the linear system Ax=b over a finite ring of characteristic n. This includes finite fields, GFp, the integers mod p, and GFpk where elements of GFpk are expressed as polynomials in RootOfs.

• 

If an optional third parameter r is specified, and it is a name, it is assigned the rank of the matrix A.

• 

A linear system with an infinite set of solutions will be parametrized in terms of variables.  Maple uses the global names _t[1], _t[2], ...  are used by default.  If an optional fourth parameter t is specified, and it is a name, the names t[1], t[2], etc. will be used instead.

Examples

AMatrix1,2,3,1,3,0,1,4,3

A123130143

(1)

bVector1,2,3

b123

(2)

xLinsolveA,bmod5

x410

(3)

A·xbmod5

000

(4)

xLinsolveA,b,r,tmod6

x5+3t31+3t3t3

(5)

r

2

(6)

A·xbmod6

000

(7)

An example using GF(2^4).

aliasa=RootOfy4+y+1mod2:

AMatrix1,a,a2,1,a2,1,1,a3,a2

A1aa21a211a3a2

(8)

bVector1,a,a2

b1aa2

(9)

xLinsolveA,bmod2

x0a3+10

(10)

zA·xbmod2

z1+aa3+1a2a3+1+aa3a3+1+a2

(11)

Expandconvertz,listmod2

0,0,0

(12)

See Also

Gaussjord

Inverse

mod

Modular[LinearSolve]