Logic
Tseitin
apply Tseitin's transformation
Calling Sequence
Parameters
Description
Examples
References
Compatibility
Tseitin(b)
b
-
Boolean expression
Tseitin accepts an arbitrary Boolean expression b and returns an expression in conjunctive normal form (CNF) which is equisatisfiable, that is, a satisfying assignment of truth values exists for b if and only if a satisfying assignment exists for Tseitin(b).
The result of the Tseitin command will typically include additional variables not present in the original expression.
Note that it is possible to transform a boolean formula into CNF simply by repeated use of De Morgan's law, and this will produce an expression which is not merely equisatisfiable but logically equivalent. However, in general this will result in an exponential increase in the number of terms. By contrast the result of Tseitin's transformation is linear in the number of Boolean operators in b.
with⁡Logic:
Tseitin⁡a&orb&andc
&or⁡B0∧B0∨¬a∧B0∨¬B∧¬B0∨a∨B∧¬B∨b∧¬B∨c∧B∨¬b∨¬c
Tseitin⁡a&impliesb
&and⁡b∨¬a
Illustrate the difference in increase in expression size between a straightforward application of De Morgan's law and the Tseitin transform.
E≔`&or`⁡X1&andY1,X2&andY2,X3&andY3,X4&andY4,X5&andY5,X6&andY6,X7&andY7,X8&andY8
E≔X1∧Y1∨X2∧Y2∨X3∧Y3∨X4∧Y4∨X5∧Y5∨X6∧Y6∨X7∧Y7∨X8∧Y8
Result_DeMorgan≔Logic:-Normalize⁡E,form=CNF
Result_DeMorgan≔X1∨X2∨X3∨X4∨X5∨X6∨X7∨X8∧X1∨X2∨X3∨X4∨X5∨X6∨X7∨Y8∧X1∨X2∨X3∨X4∨X5∨X6∨X8∨Y7∧X1∨X2∨X3∨X4∨X5∨X6∨Y7∨Y8∧X1∨X2∨X3∨X4∨X5∨X7∨X8∨Y6∧X1∨X2∨X3∨X4∨X5∨X7∨Y6∨Y8∧X1∨X2∨X3∨X4∨X5∨X8∨Y6∨Y7∧X1∨X2∨X3∨X4∨X5∨Y6∨Y7∨Y8∧X1∨X2∨X3∨X4∨X6∨X7∨X8∨Y5∧X1∨X2∨X3∨X4∨X6∨X7∨Y5∨Y8∧X1∨X2∨X3∨X4∨X6∨X8∨Y5∨Y7∧X1∨X2∨X3∨X4∨X6∨Y5∨Y7∨Y8∧X1∨X2∨X3∨X4∨X7∨X8∨Y5∨Y6∧X1∨X2∨X3∨X4∨X7∨Y5∨Y6∨Y8∧X1∨X2∨X3∨X4∨X8∨Y5∨Y6∨Y7∧X1∨X2∨X3∨X4∨Y5∨Y6∨Y7∨Y8∧X1∨X2∨X3∨X5∨X6∨X7∨X8∨Y4∧X1∨X2∨X3∨X5∨X6∨X7∨Y4∨Y8∧X1∨X2∨X3∨X5∨X6∨X8∨Y4∨Y7∧X1∨X2∨X3∨X5∨X6∨Y4∨Y7∨Y8∧X1∨X2∨X3∨X5∨X7∨X8∨Y4∨Y6∧X1∨X2∨X3∨X5∨X7∨Y4∨Y6∨Y8∧X1∨X2∨X3∨X5∨X8∨Y4∨Y6∨Y7∧X1∨X2∨X3∨X5∨Y4∨Y6∨Y7∨Y8∧X1∨X2∨X3∨X6∨X7∨X8∨Y4∨Y5∧X1∨X2∨X3∨X6∨X7∨Y4∨Y5∨Y8∧X1∨X2∨X3∨X6∨X8∨Y4∨Y5∨Y7∧X1∨X2∨X3∨X6∨Y4∨Y5∨Y7∨Y8∧X1∨X2∨X3∨X7∨X8∨Y4∨Y5∨Y6∧X1∨X2∨X3∨X7∨Y4∨Y5∨Y6∨Y8∧X1∨X2∨X3∨X8∨Y4∨Y5∨Y6∨Y7∧X1∨X2∨X3∨Y4∨Y5∨Y6∨Y7∨Y8∧X1∨X2∨X4∨X5∨X6∨X7∨X8∨Y3∧X1∨X2∨X4∨X5∨X6∨X7∨Y3∨Y8∧X1∨X2∨X4∨X5∨X6∨X8∨Y3∨Y7∧X1∨X2∨X4∨X5∨X6∨Y3∨Y7∨Y8∧X1∨X2∨X4∨X5∨X7∨X8∨Y3∨Y6∧X1∨X2∨X4∨X5∨X7∨Y3∨Y6∨Y8∧X1∨X2∨X4∨X5∨X8∨Y3∨Y6∨Y7∧X1∨X2∨X4∨X5∨Y3∨Y6∨Y7∨Y8∧X1∨X2∨X4∨X6∨X7∨X8∨Y3∨Y5∧X1∨X2∨X4∨X6∨X7∨Y3∨Y5∨Y8∧X1∨X2∨X4∨X6∨X8∨Y3∨Y5∨Y7∧X1∨X2∨X4∨X6∨Y3∨Y5∨Y7∨Y8∧X1∨X2∨X4∨X7∨X8∨Y3∨Y5∨Y6∧X1∨X2∨X4∨X7∨Y3∨Y5∨Y6∨Y8∧X1∨X2∨X4∨X8∨Y3∨Y5∨Y6∨Y7∧X1∨X2∨X4∨Y3∨Y5∨Y6∨Y7∨Y8∧X1∨X2∨X5∨X6∨X7∨X8∨Y3∨Y4∧X1∨X2∨X5∨X6∨X7∨Y3∨Y4∨Y8∧X1∨X2∨X5∨X6∨X8∨Y3∨Y4∨Y7∧X1∨X2∨X5∨X6∨Y3∨Y4∨Y7∨Y8∧X1∨X2∨X5∨X7∨X8∨Y3∨Y4∨Y6∧X1∨X2∨X5∨X7∨Y3∨Y4∨Y6∨Y8∧X1∨X2∨X5∨X8∨Y3∨Y4∨Y6∨Y7∧X1∨X2∨X5∨Y3∨Y4∨Y6∨Y7∨Y8∧X1∨X2∨X6∨X7∨X8∨Y3∨Y4∨Y5∧X1∨X2∨X6∨X7∨Y3∨Y4∨Y5∨Y8∧X1∨X2∨X6∨X8∨Y3∨Y4∨Y5∨Y7∧X1∨X2∨X6∨Y3∨Y4∨Y5∨Y7∨Y8∧X1∨X2∨X7∨X8∨Y3∨Y4∨Y5∨Y6∧X1∨X2∨X7∨Y3∨Y4∨Y5∨Y6∨Y8∧X1∨X2∨X8∨Y3∨Y4∨Y5∨Y6∨Y7∧X1∨X2∨Y3∨Y4∨Y5∨Y6∨Y7∨Y8∧X1∨X3∨X4∨X5∨X6∨X7∨X8∨Y2∧X1∨X3∨X4∨X5∨X6∨X7∨Y2∨Y8∧X1∨X3∨X4∨X5∨X6∨X8∨Y2∨Y7∧X1∨X3∨X4∨X5∨X6∨Y2∨Y7∨Y8∧X1∨X3∨X4∨X5∨X7∨X8∨Y2∨Y6∧X1∨X3∨X4∨X5∨X7∨Y2∨Y6∨Y8∧X1∨X3∨X4∨X5∨X8∨Y2∨Y6∨Y7∧X1∨X3∨X4∨X5∨Y2∨Y6∨Y7∨Y8∧X1∨X3∨X4∨X6∨X7∨X8∨Y2∨Y5∧X1∨X3∨X4∨X6∨X7∨Y2∨Y5∨Y8∧X1∨X3∨X4∨X6∨X8∨Y2∨Y5∨Y7∧X1∨X3∨X4∨X6∨Y2∨Y5∨Y7∨Y8∧X1∨X3∨X4∨X7∨X8∨Y2∨Y5∨Y6∧X1∨X3∨X4∨X7∨Y2∨Y5∨Y6∨Y8∧X1∨X3∨X4∨X8∨Y2∨Y5∨Y6∨Y7∧X1∨X3∨X4∨Y2∨Y5∨Y6∨Y7∨Y8∧X1∨X3∨X5∨X6∨X7∨X8∨Y2∨Y4∧X1∨X3∨X5∨X6∨X7∨Y2∨Y4∨Y8∧X1∨X3∨X5∨X6∨X8∨Y2∨Y4∨Y7∧X1∨X3∨X5∨X6∨Y2∨Y4∨Y7∨Y8∧X1∨X3∨X5∨X7∨X8∨Y2∨Y4∨Y6∧X1∨X3∨X5∨X7∨Y2∨Y4∨Y6∨Y8∧X1∨X3∨X5∨X8∨Y2∨Y4∨Y6∨Y7∧X1∨X3∨X5∨Y2∨Y4∨Y6∨Y7∨Y8∧X1∨X3∨X6∨X7∨X8∨Y2∨Y4∨Y5∧X1∨X3∨X6∨X7∨Y2∨Y4∨Y5∨Y8∧X1∨X3∨X6∨X8∨Y2∨Y4∨Y5∨Y7∧X1∨X3∨X6∨Y2∨Y4∨Y5∨Y7∨Y8∧X1∨X3∨X7∨X8∨Y2∨Y4∨Y5∨Y6∧X1∨X3∨X7∨Y2∨Y4∨Y5∨Y6∨Y8∧X1∨X3∨X8∨Y2∨Y4∨Y5∨Y6∨Y7∧X1∨X3∨Y2∨Y4∨Y5∨Y6∨Y7∨Y8∧X1∨X4∨X5∨X6∨X7∨X8∨Y2∨Y3∧X1∨X4∨X5∨X6∨X7∨Y2∨Y3∨Y8∧X1∨X4∨X5∨X6∨X8∨Y2∨Y3∨Y7∧X1∨X4∨X5∨X6∨Y2∨Y3∨Y7∨Y8∧X1∨X4∨X5∨X7∨X8∨Y2∨Y3∨Y6∧X1∨X4∨X5∨X7∨Y2∨Y3∨Y6∨Y8∧X1∨X4∨X5∨X8∨Y2∨Y3∨Y6∨Y7∧X1∨X4∨X5∨Y2∨Y3∨Y6∨Y7∨Y8∧X1∨X4∨X6∨X7∨X8∨Y2∨Y3∨Y5∧X1∨X4∨X6∨X7∨Y2∨Y3∨Y5∨Y8∧X1∨X4∨X6∨X8∨Y2∨Y3∨Y5∨Y7∧X1∨X4∨X6∨Y2∨Y3∨Y5∨Y7∨Y8∧X1∨X4∨X7∨X8∨Y2∨Y3∨Y5∨Y6∧X1∨X4∨X7∨Y2∨Y3∨Y5∨Y6∨Y8∧X1∨X4∨X8∨Y2∨Y3∨Y5∨Y6∨Y7∧X1∨X4∨Y2∨Y3∨Y5∨Y6∨Y7∨Y8∧X1∨X5∨X6∨X7∨X8∨Y2∨Y3∨Y4∧X1∨X5∨X6∨X7∨Y2∨Y3∨Y4∨Y8∧X1∨X5∨X6∨X8∨Y2∨Y3∨Y4∨Y7∧X1∨X5∨X6∨Y2∨Y3∨Y4∨Y7∨Y8∧X1∨X5∨X7∨X8∨Y2∨Y3∨Y4∨Y6∧X1∨X5∨X7∨Y2∨Y3∨Y4∨Y6∨Y8∧X1∨X5∨X8∨Y2∨Y3∨Y4∨Y6∨Y7∧X1∨X5∨Y2∨Y3∨Y4∨Y6∨Y7∨Y8∧X1∨X6∨X7∨X8∨Y2∨Y3∨Y4∨Y5∧X1∨X6∨X7∨Y2∨Y3∨Y4∨Y5∨Y8∧X1∨X6∨X8∨Y2∨Y3∨Y4∨Y5∨Y7∧X1∨X6∨Y2∨Y3∨Y4∨Y5∨Y7∨Y8∧X1∨X7∨X8∨Y2∨Y3∨Y4∨Y5∨Y6∧X1∨X7∨Y2∨Y3∨Y4∨Y5∨Y6∨Y8∧X1∨X8∨Y2∨Y3∨Y4∨Y5∨Y6∨Y7∧X1∨Y2∨Y3∨Y4∨Y5∨Y6∨Y7∨Y8∧X2∨X3∨X4∨X5∨X6∨X7∨X8∨Y1∧X2∨X3∨X4∨X5∨X6∨X7∨Y1∨Y8∧X2∨X3∨X4∨X5∨X6∨X8∨Y1∨Y7∧X2∨X3∨X4∨X5∨X6∨Y1∨Y7∨Y8∧X2∨X3∨X4∨X5∨X7∨X8∨Y1∨Y6∧X2∨X3∨X4∨X5∨X7∨Y1∨Y6∨Y8∧X2∨X3∨X4∨X5∨X8∨Y1∨Y6∨Y7∧X2∨X3∨X4∨X5∨Y1∨Y6∨Y7∨Y8∧X2∨X3∨X4∨X6∨X7∨X8∨Y1∨Y5∧X2∨X3∨X4∨X6∨X7∨Y1∨Y5∨Y8∧X2∨X3∨X4∨X6∨X8∨Y1∨Y5∨Y7∧X2∨X3∨X4∨X6∨Y1∨Y5∨Y7∨Y8∧X2∨X3∨X4∨X7∨X8∨Y1∨Y5∨Y6∧X2∨X3∨X4∨X7∨Y1∨Y5∨Y6∨Y8∧X2∨X3∨X4∨X8∨Y1∨Y5∨Y6∨Y7∧X2∨X3∨X4∨Y1∨Y5∨Y6∨Y7∨Y8∧X2∨X3∨X5∨X6∨X7∨X8∨Y1∨Y4∧X2∨X3∨X5∨X6∨X7∨Y1∨Y4∨Y8∧X2∨X3∨X5∨X6∨X8∨Y1∨Y4∨Y7∧X2∨X3∨X5∨X6∨Y1∨Y4∨Y7∨Y8∧X2∨X3∨X5∨X7∨X8∨Y1∨Y4∨Y6∧X2∨X3∨X5∨X7∨Y1∨Y4∨Y6∨Y8∧X2∨X3∨X5∨X8∨Y1∨Y4∨Y6∨Y7∧X2∨X3∨X5∨Y1∨Y4∨Y6∨Y7∨Y8∧X2∨X3∨X6∨X7∨X8∨Y1∨Y4∨Y5∧X2∨X3∨X6∨X7∨Y1∨Y4∨Y5∨Y8∧X2∨X3∨X6∨X8∨Y1∨Y4∨Y5∨Y7∧X2∨X3∨X6∨Y1∨Y4∨Y5∨Y7∨Y8∧X2∨X3∨X7∨X8∨Y1∨Y4∨Y5∨Y6∧X2∨X3∨X7∨Y1∨Y4∨Y5∨Y6∨Y8∧X2∨X3∨X8∨Y1∨Y4∨Y5∨Y6∨Y7∧X2∨X3∨Y1∨Y4∨Y5∨Y6∨Y7∨Y8∧X2∨X4∨X5∨X6∨X7∨X8∨Y1∨Y3∧X2∨X4∨X5∨X6∨X7∨Y1∨Y3∨Y8∧X2∨X4∨X5∨X6∨X8∨Y1∨Y3∨Y7∧X2∨X4∨X5∨X6∨Y1∨Y3∨Y7∨Y8∧X2∨X4∨X5∨X7∨X8∨Y1∨Y3∨Y6∧X2∨X4∨X5∨X7∨Y1∨Y3∨Y6∨Y8∧X2∨X4∨X5∨X8∨Y1∨Y3∨Y6∨Y7∧X2∨X4∨X5∨Y1∨Y3∨Y6∨Y7∨Y8∧X2∨X4∨X6∨X7∨X8∨Y1∨Y3∨Y5∧X2∨X4∨X6∨X7∨Y1∨Y3∨Y5∨Y8∧X2∨X4∨X6∨X8∨Y1∨Y3∨Y5∨Y7∧X2∨X4∨X6∨Y1∨Y3∨Y5∨Y7∨Y8∧X2∨X4∨X7∨X8∨Y1∨Y3∨Y5∨Y6∧X2∨X4∨X7∨Y1∨Y3∨Y5∨Y6∨Y8∧X2∨X4∨X8∨Y1∨Y3∨Y5∨Y6∨Y7∧X2∨X4∨Y1∨Y3∨Y5∨Y6∨Y7∨Y8∧X2∨X5∨X6∨X7∨X8∨Y1∨Y3∨Y4∧X2∨X5∨X6∨X7∨Y1∨Y3∨Y4∨Y8∧X2∨X5∨X6∨X8∨Y1∨Y3∨Y4∨Y7∧X2∨X5∨X6∨Y1∨Y3∨Y4∨Y7∨Y8∧X2∨X5∨X7∨X8∨Y1∨Y3∨Y4∨Y6∧X2∨X5∨X7∨Y1∨Y3∨Y4∨Y6∨Y8∧X2∨X5∨X8∨Y1∨Y3∨Y4∨Y6∨Y7∧X2∨X5∨Y1∨Y3∨Y4∨Y6∨Y7∨Y8∧X2∨X6∨X7∨X8∨Y1∨Y3∨Y4∨Y5∧X2∨X6∨X7∨Y1∨Y3∨Y4∨Y5∨Y8∧X2∨X6∨X8∨Y1∨Y3∨Y4∨Y5∨Y7∧X2∨X6∨Y1∨Y3∨Y4∨Y5∨Y7∨Y8∧X2∨X7∨X8∨Y1∨Y3∨Y4∨Y5∨Y6∧X2∨X7∨Y1∨Y3∨Y4∨Y5∨Y6∨Y8∧X2∨X8∨Y1∨Y3∨Y4∨Y5∨Y6∨Y7∧X2∨Y1∨Y3∨Y4∨Y5∨Y6∨Y7∨Y8∧X3∨X4∨X5∨X6∨X7∨X8∨Y1∨Y2∧X3∨X4∨X5∨X6∨X7∨Y1∨Y2∨Y8∧X3∨X4∨X5∨X6∨X8∨Y1∨Y2∨Y7∧X3∨X4∨X5∨X6∨Y1∨Y2∨Y7∨Y8∧X3∨X4∨X5∨X7∨X8∨Y1∨Y2∨Y6∧X3∨X4∨X5∨X7∨Y1∨Y2∨Y6∨Y8∧X3∨X4∨X5∨X8∨Y1∨Y2∨Y6∨Y7∧X3∨X4∨X5∨Y1∨Y2∨Y6∨Y7∨Y8∧X3∨X4∨X6∨X7∨X8∨Y1∨Y2∨Y5∧X3∨X4∨X6∨X7∨Y1∨Y2∨Y5∨Y8∧X3∨X4∨X6∨X8∨Y1∨Y2∨Y5∨Y7∧X3∨X4∨X6∨Y1∨Y2∨Y5∨Y7∨Y8∧X3∨X4∨X7∨X8∨Y1∨Y2∨Y5∨Y6∧X3∨X4∨X7∨Y1∨Y2∨Y5∨Y6∨Y8∧X3∨X4∨X8∨Y1∨Y2∨Y5∨Y6∨Y7∧X3∨X4∨Y1∨Y2∨Y5∨Y6∨Y7∨Y8∧X3∨X5∨X6∨X7∨X8∨Y1∨Y2∨Y4∧X3∨X5∨X6∨X7∨Y1∨Y2∨Y4∨Y8∧X3∨X5∨X6∨X8∨Y1∨Y2∨Y4∨Y7∧X3∨X5∨X6∨Y1∨Y2∨Y4∨Y7∨Y8∧X3∨X5∨X7∨X8∨Y1∨Y2∨Y4∨Y6∧X3∨X5∨X7∨Y1∨Y2∨Y4∨Y6∨Y8∧X3∨X5∨X8∨Y1∨Y2∨Y4∨Y6∨Y7∧X3∨X5∨Y1∨Y2∨Y4∨Y6∨Y7∨Y8∧X3∨X6∨X7∨X8∨Y1∨Y2∨Y4∨Y5∧X3∨X6∨X7∨Y1∨Y2∨Y4∨Y5∨Y8∧X3∨X6∨X8∨Y1∨Y2∨Y4∨Y5∨Y7∧X3∨X6∨Y1∨Y2∨Y4∨Y5∨Y7∨Y8∧X3∨X7∨X8∨Y1∨Y2∨Y4∨Y5∨Y6∧X3∨X7∨Y1∨Y2∨Y4∨Y5∨Y6∨Y8∧X3∨X8∨Y1∨Y2∨Y4∨Y5∨Y6∨Y7∧X3∨Y1∨Y2∨Y4∨Y5∨Y6∨Y7∨Y8∧X4∨X5∨X6∨X7∨X8∨Y1∨Y2∨Y3∧X4∨X5∨X6∨X7∨Y1∨Y2∨Y3∨Y8∧X4∨X5∨X6∨X8∨Y1∨Y2∨Y3∨Y7∧X4∨X5∨X6∨Y1∨Y2∨Y3∨Y7∨Y8∧X4∨X5∨X7∨X8∨Y1∨Y2∨Y3∨Y6∧X4∨X5∨X7∨Y1∨Y2∨Y3∨Y6∨Y8∧X4∨X5∨X8∨Y1∨Y2∨Y3∨Y6∨Y7∧X4∨X5∨Y1∨Y2∨Y3∨Y6∨Y7∨Y8∧X4∨X6∨X7∨X8∨Y1∨Y2∨Y3∨Y5∧X4∨X6∨X7∨Y1∨Y2∨Y3∨Y5∨Y8∧X4∨X6∨X8∨Y1∨Y2∨Y3∨Y5∨Y7∧X4∨X6∨Y1∨Y2∨Y3∨Y5∨Y7∨Y8∧X4∨X7∨X8∨Y1∨Y2∨Y3∨Y5∨Y6∧X4∨X7∨Y1∨Y2∨Y3∨Y5∨Y6∨Y8∧X4∨X8∨Y1∨Y2∨Y3∨Y5∨Y6∨Y7∧X4∨Y1∨Y2∨Y3∨Y5∨Y6∨Y7∨Y8∧X5∨X6∨X7∨X8∨Y1∨Y2∨Y3∨Y4∧X5∨X6∨X7∨Y1∨Y2∨Y3∨Y4∨Y8∧X5∨X6∨X8∨Y1∨Y2∨Y3∨Y4∨Y7∧X5∨X6∨Y1∨Y2∨Y3∨Y4∨Y7∨Y8∧X5∨X7∨X8∨Y1∨Y2∨Y3∨Y4∨Y6∧X5∨X7∨Y1∨Y2∨Y3∨Y4∨Y6∨Y8∧X5∨X8∨Y1∨Y2∨Y3∨Y4∨Y6∨Y7∧X5∨Y1∨Y2∨Y3∨Y4∨Y6∨Y7∨Y8∧X6∨X7∨X8∨Y1∨Y2∨Y3∨Y4∨Y5∧X6∨X7∨Y1∨Y2∨Y3∨Y4∨Y5∨Y8∧X6∨X8∨Y1∨Y2∨Y3∨Y4∨Y5∨Y7∧X6∨Y1∨Y2∨Y3∨Y4∨Y5∨Y7∨Y8∧X7∨X8∨Y1∨Y2∨Y3∨Y4∨Y5∨Y6∧X7∨Y1∨Y2∨Y3∨Y4∨Y5∨Y6∨Y8∧X8∨Y1∨Y2∨Y3∨Y4∨Y5∨Y6∨Y7∧Y1∨Y2∨Y3∨Y4∨Y5∨Y6∨Y7∨Y8
length⁡Result_DeMorgan
8200
Result_Tseitin≔Tseitin⁡E:
length⁡Result_Tseitin
895
Tseitin, G.S. On the complexity of derivation in propositional calculus. In A. O. Slisenko, editor, Studies in Constructive Mathematics and Mathematical Logic, pp. 115–125, 1970.
The Logic[Tseitin] command was introduced in Maple 2016.
For more information on Maple 2016 changes, see Updates in Maple 2016.
See Also
Logic[Normalize]
Logic[Satisfy]
Download Help Document