MTM
fourier
Fourier integral transform
Calling Sequence
Parameters
Description
Examples
fourier(M)
fourier(M,v)
fourier(M,u, v)
M
-
array
v
variable
u
The fourier(M) function computes the element-wise Fourier transform of M. The result, R, is formed as R[i,j] = fourier(M[i,j], u, v).
fourier(f) is the Fourier transform of the scalar f with default independent variable x. If f is not a function of x, then f is assumed to be a function of the independent variable returned by findsym(f,1). The default return is a function of w.
If f = f(w), then fourier returns a function of t.
By definition, F⁡w=∫−∞∞f⁡x⁢ⅇ−I⁢w⁢xⅆx, where the integration above proceeds with respect to x.
fourier(f,v) makes F a function of the variable v instead of the default w.
fourier(f,u,v) makes f a function of u instead of the default. The integration is then with respect to u.
with⁡MTM:
fourier⁡t⁢exp⁡−3⁢t⁢Heaviside⁡t
13+I⁢w2
fourier⁡w⁢exp⁡−3⁢w⁢Heaviside⁡w
13+I⁢t2
fourier⁡t⁢exp⁡−3⁢t⁢Heaviside⁡t,s
13+I⁢s2
fourier⁡z⁢t⁢exp⁡−3⁢t⁢Heaviside⁡t,z,s
2⁢I⁢t⁢ⅇ−3⁢t⁢Heaviside⁡t⁢π⁢Dirac⁡1,s
M≔Matrix⁡x⁢exp⁡−3⁢x⁢Heaviside⁡x,z⁢x⁢exp⁡−3⁢x⁢Heaviside⁡x:
fourier⁡M
13+I⁢w2z3+I⁢w2
See Also
inttrans[fourier]
MTM[heaviside]
MTM[ifourier]
MTM[laplace]
MTM[ztrans]
Download Help Document