gcd - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


MTM

  

gcd

  

greatest common divisor of polynomials

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

gcd(A, B)

gcd(A, B, x)

[g, s, t] = gcd(A, B)

[g, s, t] = gcd(A, B, x)

Parameters

A

-

array or expression

B

-

array or expression

x

-

variable

Description

• 

The gcd function computes the greatest common divisor of two polynomials A and B.

• 

The optional argument x specifies the dependant variable.  If unspecified, findsym(A,1) or findsym(B,1) is used (whichever returns a non-NULL result first).  Note that if the input polynomials are multivariate then, in general, s and t will be rational functions in variables other than x.

• 

The extended Euclidean algorithm is applied by gcd to compute unique polynomials s, t and g in x such that s*A + t*B = g where g is the monic greatest common divisor of A and B. The results computed satisfy degree(s) < degree(B/g) and degree(t) < degree(A/g). The greatest common divisor g is returned as the function value.

• 

If A and B are arrays, the gcd(A,B) function computes the element-wise greatest common divisor of A and B.

• 

If A is a scalar and B is an array then gcd computes the greatest common divisor of A and each element of B.

• 

Arrays A and B must be the same size.

Examples

withMTM&colon;

AMatrix2&comma;3&comma;fill=12x&colon;

BMatrix2&comma;3&comma;fill=27xy&colon;

gcdA&comma;B

xxxxxx

(1)

g,c,dgcdx310x2+31x30&comma;x21&comma;x312x2+41x42&comma;x2+2x+1

g,c,dx25x+6x+1,1212,1212

(2)

See Also

gcd

MTM[lcm]